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What are your software development concerns?

▪ Accuracy

▪ Software Speed

▪ Development Time

▪ Cost

▪ Compatibility

▪ Documentation

▪ Reusability

▪ Effective Testing

▪ Integration

▪ Ease of Collaboration

▪ Legacy Code

▪ Liability

▪ Maintainability

▪ Model Risk

▪ Robustness

▪ Developer Expertise

▪ Software Stack Complexity

▪ …?
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Software development practices can help

Treat your software like an asset → reuse it

Developers often spend 4X the effort to maintain vs build software

…but this doesn’t need to be true!
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Journal paper: “Faster issue resolution with higher technical 

quality of software”, Software Quality Journal, 201100
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Software development practices can help

▪ Software development approaches like Agile help improve code quality 

▪ The tools and practices we discuss today support Agile development
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Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary
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How do you currently manage your files and paths?

▪ One big folder of files?

▪ Many folders of files?

▪ Organize your code in packages?

▪ Manual path management?
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▪ Same source code, tests, documentation, requirements, compiler… 

▪ Consistent, shared environment 

▪ Integration with source control

Successful collaborative development requires …
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Projects (MATLAB Projects)

▪ Manage your files and path

▪ Analyze file dependencies

▪ Function refactoring

▪ Run startup & shutdown tasks

▪ Create project shortcuts

▪ Label and filter files

▪ Integrate source control
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Prototype VaR

Model

Refactor and Test 

Code

Continuous 

Integration and 

Deployment

Example: Building a Value at Risk Model on a Portfolio



10

Managing your code with Projects

1. Create project
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Managing your code with Projects

1. Create project

2. Set path and startup tasks
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Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies
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Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files Identify and run tests

…on Continuous Integration (CI) servers
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Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files
Identify and run tests

…on Continuous Integration servers
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Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files

5. Integrate source control
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Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary
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How do you keep track of and share your code as it changes?

▪ Do you:

– make copies of your code?

– e-mail yourself copies of your code?

– keep a spreadsheet of changes?

▪ Or do you not keep track of your changes?

There’s a better way!

!!!
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Source Control

▪ A system to manage changes to code, documents, etc.

▪ Benefits of source control:

– Maintain backups, history, and ability to restore

– Track changes and responsibility

– Simplify reconciling conflicting changes

– Generate discussion

– Save you from yourself
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Source Control integration

▪ Manage your code from within

the MATLAB Desktop

▪ Git integrated into:

– Projects

– Current Folder browser

▪ Use Comparison Tool to view and

merge changes between revisions
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Repo

Co-authoring workflows

Creating a repo:

▪ Initialize

▪ Add

▪ Clone

Making changes:

▪ Commit

▪ Push

▪ Branch

▪ Merge

branch

Repo

Repo

Repo Repo

commit
merge request
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Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary
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What defines “better” code?

▪ Better organized?

▪ Smaller?

▪ Faster?

▪ More stable?

▪ More portable?

▪ Easier to maintain?

▪ …

YES!
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Considerations when writing better, robust, and portable code

▪ Input validation

▪ Error handling

▪ Writing faster code using the MATLAB Profiler

▪ Writing code faster using the Live Editor

▪ Refactoring code to reduce complexity

▪ Writing code that works on all operating systems

▪ Sharing your code via apps, toolboxes, and deployment

▪ Integrating with other languages

▪ And more…
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Writing more robust code

>> y = myfunc( 1:5 )

Index exceeds matrix dimensions.

Error in mypkg1.mypkg1a.mypkg1ab.myfunc1 (line 9)

y(idx) = u(idx)*log(u_hat(idx))+(1-u(idx))*log(1-u_hat(idx));

Error in mypkg2.mypkg2a.myfunc2 (line 5)

y = mypkg1.mypkg1a.mypkg1ab.myfunc1( myVar1 .* myVar2 );

Error in mypkg3.mypkg3a.myfunc3>@(x)mypkg2.mypkg2a.myfunc2(x) (line 4)

y = arrayfun( @(x) mypkg2.mypkg2a.myfunc2( x ), myVar );

Error in mypkg3.mypkg3a.myfunc3 (line 4)

y = arrayfun( @(x) mypkg2.mypkg2a.myfunc2( x ), myVar );

Error in myfunc (line 10)
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▪ validateattributes

▪ assert

▪ isempty, isnan, isfinite, …

▪ narginchk

▪ inputParser

▪ Property validation for classes

Writing more robust code – Validating inputs

>> myfunc( 1:5 )

Error using myfunc (line 4)

Expected input to be of size 1x3, but it is of size 1x5.

>> myfunc( [2 3 1] )

Error using myfunc (line 4)

Expected input to be increasing valued.
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Writing more robust code – Handling errors more elegantly

▪ error and warning

– Use identifiers

▪ try/catch

▪ MException

▪ errordlg and warndlg
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Writing faster code – MATLAB Profiler

▪ Total number of function calls

▪ Time per function call

▪ Highlights largest code bottlenecks

▪ Statement coverage of code
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Writing code faster – Programming aids in the Live Editor

▪ Automatically closed parentheses, 

loops, and conditional blocks

▪ Context-aware coding guides

– Automatically suggest function names 

variables, or file names

– List available Name/Value pairs
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Writing code faster – Quickly and safely refactoring code

▪ Live Editor shortcuts to refactor blocks of code into functions
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Writing code faster – Quickly and safely refactoring code

▪ Function refactoring 

across files in Projects
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Simple code quality and complexity assessment – checkcode

▪ Analyze all warnings and errors in a code

▪ McCabe Cyclomatic Complexity

– Measures complexity based on the number of linearly independent paths through a  code
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Writing more portable code – Code that runs everywhere

▪ Operating System-aware code

– fullfile

– ispc, ismac, isunix

▪ More reliable portability with Projects

– Consistent path management

– Automated startup/shutdown procedures

– Built-in file dependency analysis

>> fullfile("..","data","2019","April")

Windows: "..\data\2019\April"

Mac/Linux: "../data/2019/April"



33

Sharing your code – The traditional way

▪ Unzip the zip file

▪ Find the instructions and release notes

▪ Decide whether you want the thing

▪ Remove folders from old versions from the path

▪ Add folders to the path

▪ Save the path for next time

▪ Find the documentation

▪ Do work
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Sharing your code – How should you share code?

It depends on who you are sharing your code with:

▪ Co-authors → Project

▪ End-user with MATLAB → Toolbox or App

▪ End-user without MATLAB → Deployment (application, library, C code …)
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Sharing your code with MATLAB users – Packaging your code

▪ Toolbox Packaging

▪ App Packaging

• Combine files into one installation file

• Installs in MATLAB Add-Ons or Apps tab

• Documents required products
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Sharing your code outside of MATLAB – Application Deployment

Share your applications as:

▪ Standalone software

▪ Web applications

▪ Language-specific libraries 

▪ Generated code

MATLAB Compiler

MATLAB Compiler

MATLAB Compiler SDK

MATLAB Coder
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Integrating with other languages – External interfaces

Calling Libraries Written in Another Language 

From MATLAB

Calling MATLAB from Another Language

• Java

• Python

• C/C++

• Fortran

• COM components and ActiveX® controls

• RESTful, HTTP, and WSDL web services

• Java

• Python

• C/C++

• Fortran

• COM Automation server



38

Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary
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Code Maintenance – The hidden cost of development

▪ How do you ensure code doesn’t break over time?

▪ How do you keep new features from breaking existing features?

▪ How do you maintain confidence that your code is working as expected?
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Upgrading to the latest MATLAB – Code Compatibility Report

▪ Tool to help upgrade code to 

latest and greatest MATLAB

▪ Identifies potential 

compatibility issues

▪ Hundreds of checks for 

incompatibilities, errors, and 

warnings

Link to documentation

for updates

Go directly to the

line of code
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Test early, test often, test automatically

▪ Reduce risk of code breaking

▪ Catch problems early

▪ Improve code quality

▪ Document expected behaviour

Credit: http://geek-and-poke.com/

No

YesDo I care if it 

actually works?
You need 

testing!

Do I need 

testing?

You might not 

need testing

http://geek-and-poke.com/


42

▪ MATLAB Unit Testing Framework

▪ Performance Testing Framework

▪ App Testing Framework

Testing Frameworks
Test your code early and often
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Testing Frameworks – Flexible development

▪ Script-based test

▪ Function-based test

▪ Class-based test

▪ Test integration with 

Projects
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Testing Frameworks – Easily customize and run existing tests

▪ Added buttons to make testing more 

readily accessible

▪ Testing your code should be as easy as 

hitting the “Run” button!
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Testing Frameworks – App Testing Framework

▪ Verify app behavior with tests that programmatically perform gestures on a UI component

testCase.press(myApp.checkbox)

testCase.choose(myApp.discreteKnob, "Medium")

testCase.drag(myApp.continuousKnob, 10, 90)

testCase.type(myApp.editfield, myTextVar)
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Automated Testing – Continuous Integration (CI)

▪ A system to automate the building, testing, integration, and deployment of 

code as it is being developed and maintained

▪ Popular CI systems: Jenkins, Travis, CircleCI , Bamboo, and others…

▪ Benefits:

– Detect integration bugs early

– Allow you to stop bugs from being accepted

– Track and report testing history

– Flexible testing schedules and triggers
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Automated Testing – Continuous Integration workflow

Source Control Trigger Build Post Build

▪ Push

▪ Merge Request

▪ Pull Request

▪ Check In

▪ Periodic

▪ Manual

▪ Publish:
– Test Results

– Coverage Results

– Performance 

Results

▪ Accept Merge 

Request

▪ Email Notification

▪ Run MATLAB / Simulink Tests

▪ Run Performance Tests

▪ Generate Code

▪ Package Toolboxes

Continuous Integration System
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Automated Testing – Jenkins plugin

▪ Easily connect and configure 

MATLAB with Jenkins

▪ Schedule automatic code 

execution and testing:

– based on time of day

– whenever new code changes 

are committed
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Automated Testing – Jenkins plugin – Configuration

▪ Easy configuration

– Locate MATLAB

– Identify repository to load

– Set build triggers

– Add build step
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Automated Testing – Jenkins plugin – Testing reports

▪ View testing results

▪ View code coverage

▪ View testing reports
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Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary
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Key Takeaways

▪ You will save you time, effort, money, and frustration with good software 

development practices.

▪ MATLAB provides tools that enable agile software development.

▪ We’re adding more software development tools and features every release!
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MATLAB

is the easiest and 

most productive environment 

for engineers and scientists
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