
1© 2019 The MathWorks, Inc.

Software Development with MATLAB

Siddharth Sundar, Senior Finance Application Engineer

2

What are your software development concerns?

▪ Accuracy

▪ Software Speed

▪ Development Time

▪ Cost

▪ Compatibility

▪ Documentation

▪ Reusability

▪ Effective Testing

▪ Integration

▪ Ease of Collaboration

▪ Legacy Code

▪ Liability

▪ Maintainability

▪ Model Risk

▪ Robustness

▪ Developer Expertise

▪ Software Stack Complexity

▪ …?

3

Software development practices can help

Treat your software like an asset → reuse it

Developers often spend 4X the effort to maintain vs build software

…but this doesn’t need to be true!

M
a
in

ta
in

a
b

il
it

y
 r

a
ti

n
g

Journal paper: “Faster issue resolution with higher technical

quality of software”, Software Quality Journal, 201100

4

Software development practices can help

▪ Software development approaches like Agile help improve code quality

▪ The tools and practices we discuss today support Agile development

5

Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary

6

How do you currently manage your files and paths?

▪ One big folder of files?

▪ Many folders of files?

▪ Organize your code in packages?

▪ Manual path management?

7

▪ Same source code, tests, documentation, requirements, compiler…

▪ Consistent, shared environment

▪ Integration with source control

Successful collaborative development requires …

8

Projects (MATLAB Projects)

▪ Manage your files and path

▪ Analyze file dependencies

▪ Function refactoring

▪ Run startup & shutdown tasks

▪ Create project shortcuts

▪ Label and filter files

▪ Integrate source control

9

Prototype VaR

Model

Refactor and Test

Code

Continuous

Integration and

Deployment

Example: Building a Value at Risk Model on a Portfolio

10

Managing your code with Projects

1. Create project

11

Managing your code with Projects

1. Create project

2. Set path and startup tasks

12

Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

13

Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files Identify and run tests

…on Continuous Integration (CI) servers

14

Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files
Identify and run tests

…on Continuous Integration servers

15

Managing your code with Projects

1. Create project

2. Set path and startup tasks

3. Explore dependencies

4. Label files

5. Integrate source control

16

Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary

17

How do you keep track of and share your code as it changes?

▪ Do you:

– make copies of your code?

– e-mail yourself copies of your code?

– keep a spreadsheet of changes?

▪ Or do you not keep track of your changes?

There’s a better way!

!!!

18

Source Control

▪ A system to manage changes to code, documents, etc.

▪ Benefits of source control:

– Maintain backups, history, and ability to restore

– Track changes and responsibility

– Simplify reconciling conflicting changes

– Generate discussion

– Save you from yourself

19

Source Control integration

▪ Manage your code from within

the MATLAB Desktop

▪ Git integrated into:

– Projects

– Current Folder browser

▪ Use Comparison Tool to view and

merge changes between revisions

20

Repo

Co-authoring workflows

Creating a repo:

▪ Initialize

▪ Add

▪ Clone

Making changes:

▪ Commit

▪ Push

▪ Branch

▪ Merge

branch

Repo

Repo

Repo Repo

commit
merge request

21

Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary

22

What defines “better” code?

▪ Better organized?

▪ Smaller?

▪ Faster?

▪ More stable?

▪ More portable?

▪ Easier to maintain?

▪ …

YES!

23

Considerations when writing better, robust, and portable code

▪ Input validation

▪ Error handling

▪ Writing faster code using the MATLAB Profiler

▪ Writing code faster using the Live Editor

▪ Refactoring code to reduce complexity

▪ Writing code that works on all operating systems

▪ Sharing your code via apps, toolboxes, and deployment

▪ Integrating with other languages

▪ And more…

24

Writing more robust code

>> y = myfunc(1:5)

Index exceeds matrix dimensions.

Error in mypkg1.mypkg1a.mypkg1ab.myfunc1 (line 9)

y(idx) = u(idx)*log(u_hat(idx))+(1-u(idx))*log(1-u_hat(idx));

Error in mypkg2.mypkg2a.myfunc2 (line 5)

y = mypkg1.mypkg1a.mypkg1ab.myfunc1(myVar1 .* myVar2);

Error in mypkg3.mypkg3a.myfunc3>@(x)mypkg2.mypkg2a.myfunc2(x) (line 4)

y = arrayfun(@(x) mypkg2.mypkg2a.myfunc2(x), myVar);

Error in mypkg3.mypkg3a.myfunc3 (line 4)

y = arrayfun(@(x) mypkg2.mypkg2a.myfunc2(x), myVar);

Error in myfunc (line 10)

25

▪ validateattributes

▪ assert

▪ isempty, isnan, isfinite, …

▪ narginchk

▪ inputParser

▪ Property validation for classes

Writing more robust code – Validating inputs

>> myfunc(1:5)

Error using myfunc (line 4)

Expected input to be of size 1x3, but it is of size 1x5.

>> myfunc([2 3 1])

Error using myfunc (line 4)

Expected input to be increasing valued.

26

Writing more robust code – Handling errors more elegantly

▪ error and warning

– Use identifiers

▪ try/catch

▪ MException

▪ errordlg and warndlg

27

Writing faster code – MATLAB Profiler

▪ Total number of function calls

▪ Time per function call

▪ Highlights largest code bottlenecks

▪ Statement coverage of code

28

Writing code faster – Programming aids in the Live Editor

▪ Automatically closed parentheses,

loops, and conditional blocks

▪ Context-aware coding guides

– Automatically suggest function names

variables, or file names

– List available Name/Value pairs

29

Writing code faster – Quickly and safely refactoring code

▪ Live Editor shortcuts to refactor blocks of code into functions

30

Writing code faster – Quickly and safely refactoring code

▪ Function refactoring

across files in Projects

31

Simple code quality and complexity assessment – checkcode

▪ Analyze all warnings and errors in a code

▪ McCabe Cyclomatic Complexity

– Measures complexity based on the number of linearly independent paths through a code

32

Writing more portable code – Code that runs everywhere

▪ Operating System-aware code

– fullfile

– ispc, ismac, isunix

▪ More reliable portability with Projects

– Consistent path management

– Automated startup/shutdown procedures

– Built-in file dependency analysis

>> fullfile("..","data","2019","April")

Windows: "..\data\2019\April"

Mac/Linux: "../data/2019/April"

33

Sharing your code – The traditional way

▪ Unzip the zip file

▪ Find the instructions and release notes

▪ Decide whether you want the thing

▪ Remove folders from old versions from the path

▪ Add folders to the path

▪ Save the path for next time

▪ Find the documentation

▪ Do work

34

Sharing your code – How should you share code?

It depends on who you are sharing your code with:

▪ Co-authors → Project

▪ End-user with MATLAB → Toolbox or App

▪ End-user without MATLAB → Deployment (application, library, C code …)

35

Sharing your code with MATLAB users – Packaging your code

▪ Toolbox Packaging

▪ App Packaging

• Combine files into one installation file

• Installs in MATLAB Add-Ons or Apps tab

• Documents required products

36

Sharing your code outside of MATLAB – Application Deployment

Share your applications as:

▪ Standalone software

▪ Web applications

▪ Language-specific libraries

▪ Generated code

MATLAB Compiler

MATLAB Compiler

MATLAB Compiler SDK

MATLAB Coder

37

Integrating with other languages – External interfaces

Calling Libraries Written in Another Language

From MATLAB

Calling MATLAB from Another Language

• Java

• Python

• C/C++

• Fortran

• COM components and ActiveX® controls

• RESTful, HTTP, and WSDL web services

• Java

• Python

• C/C++

• Fortran

• COM Automation server

38

Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary

39

Code Maintenance – The hidden cost of development

▪ How do you ensure code doesn’t break over time?

▪ How do you keep new features from breaking existing features?

▪ How do you maintain confidence that your code is working as expected?
M

a
in

ta
in

a
b

il
it

y
 r

a
ti

n
g

40

Upgrading to the latest MATLAB – Code Compatibility Report

▪ Tool to help upgrade code to

latest and greatest MATLAB

▪ Identifies potential

compatibility issues

▪ Hundreds of checks for

incompatibilities, errors, and

warnings

Link to documentation

for updates

Go directly to the

line of code

41

Test early, test often, test automatically

▪ Reduce risk of code breaking

▪ Catch problems early

▪ Improve code quality

▪ Document expected behaviour

Credit: http://geek-and-poke.com/

No

YesDo I care if it

actually works?
You need

testing!

Do I need

testing?

You might not

need testing

http://geek-and-poke.com/

42

▪ MATLAB Unit Testing Framework

▪ Performance Testing Framework

▪ App Testing Framework

Testing Frameworks
Test your code early and often

43

Testing Frameworks – Flexible development

▪ Script-based test

▪ Function-based test

▪ Class-based test

▪ Test integration with

Projects

44

Testing Frameworks – Easily customize and run existing tests

▪ Added buttons to make testing more

readily accessible

▪ Testing your code should be as easy as

hitting the “Run” button!

45

Testing Frameworks – App Testing Framework

▪ Verify app behavior with tests that programmatically perform gestures on a UI component

testCase.press(myApp.checkbox)

testCase.choose(myApp.discreteKnob, "Medium")

testCase.drag(myApp.continuousKnob, 10, 90)

testCase.type(myApp.editfield, myTextVar)

46

Automated Testing – Continuous Integration (CI)

▪ A system to automate the building, testing, integration, and deployment of

code as it is being developed and maintained

▪ Popular CI systems: Jenkins, Travis, CircleCI , Bamboo, and others…

▪ Benefits:

– Detect integration bugs early

– Allow you to stop bugs from being accepted

– Track and report testing history

– Flexible testing schedules and triggers

47

Automated Testing – Continuous Integration workflow

Source Control Trigger Build Post Build

▪ Push

▪ Merge Request

▪ Pull Request

▪ Check In

▪ Periodic

▪ Manual

▪ Publish:
– Test Results

– Coverage Results

– Performance

Results

▪ Accept Merge

Request

▪ Email Notification

▪ Run MATLAB / Simulink Tests

▪ Run Performance Tests

▪ Generate Code

▪ Package Toolboxes

Continuous Integration System

48

Automated Testing – Jenkins plugin

▪ Easily connect and configure

MATLAB with Jenkins

▪ Schedule automatic code

execution and testing:

– based on time of day

– whenever new code changes

are committed

49

Automated Testing – Jenkins plugin – Configuration

▪ Easy configuration

– Locate MATLAB

– Identify repository to load

– Set build triggers

– Add build step

50

Automated Testing – Jenkins plugin – Testing reports

▪ View testing results

▪ View code coverage

▪ View testing reports

51

Agenda

Managing your code

Tracking code changes and co-authoring workflows

Writing better, robust, and portable code

Testing and maintaining your code

Summary

52

Key Takeaways

▪ You will save you time, effort, money, and frustration with good software

development practices.

▪ MATLAB provides tools that enable agile software development.

▪ We’re adding more software development tools and features every release!

53

MATLAB

is the easiest and

most productive environment

for engineers and scientists

54© 2019 The MathWorks, Inc.

