
1© 2015 The MathWorks, Inc.

Verification and Validation Solutions

for High Integrity Systems

Tiffany Liang

Application Engineer

MathWorks

2

Recommended Workflow
Detecting errors early in the development cycle

Source Code

Requirements

Implementation Model

(Fixed-point)

Object Code

Executable

Requirements Model

Model Design・Simulation

(SL/SF)

Model Comparison・Merge

(Report Generator)

Report Generation

(Report Generator)

Model Guideline Check (SLVV)

Model Coverage (SLVV)

Test Case Generation (SLDV)

Design Error Detection (SLDV)

Interface to Requirements

Management Tool (SLVV)

Formal Verification (SLDV)

Auto Code-Generation (EC)

Traceability Report (EC)

Configuration Management (Simulink Project)

SIL/PIL Test（EC）
Code Coverage（EC）
Static Code Analysis

(Polyspace)

3

MathWorks benefits

Early verification and Validation

Source Code

Requirements

Implementation Model

(Fixed-point)

Object Code

Executable

Requirements Model

Requirements Linking (SLVV)
Formal Verification (SLDV)

Model Guideline Check (SLVV)
Model Coverage Test (SLVV)
Test Case Auto-Generation
(SLDV)

Report Auto-Generation
(Report Generator)

SILS/PILS (EC)
Runtime Error
Identification
(Polyspace)

・Able to form small V-loops

・Able to detect errors early

in the development cycle

 Model  Code consistency

allows for Simulink simulation

results to be considered “truth”.

 Early model verification is

possible due to the ability to

investigate floating-point

models

 Large team development made

easy through highly

customizable tool chain

 Errors in object code detected

easily through synchronization

between simulations and

SILS/PILS

4

Examples of High Reliability Applications

S
o

u
rc

e
s
:
IS

O
 2

6
2

6
2

-1
:2

0
1
1

250 CAN

messages

with 2500

individual

signals

S
o

u
rc

e
:
K

.
G

ri
m

m
:
S

o
ft

w
a

re
-T

e
c
h

n
o

lo
g

ie
 i
n

 d
e

r
A

u
to

m
o

b
o

ili
n
d

u
s
tr

ie
.
1

9
.
S

T
E

V
-O

E
S

T
E

R
R

E
IC

H
-

F
A

C
H

T
A

G
U

N
G

 I
T

-/
S

o
ft

w
a

re
q

u
a

lit
ä

ts
m

a
n
a

g
m

e
n
t
in

 d
e

r
P

ra
x
is

,

W
ie

n
,
A

u
s
tr

ia
,
M

a
y
 2

0
0

4

Antiskid Brakes

 Unintended asymmetrical braking

Electronic Parking Brake

 Unintended braking during operation

Vehicle-to-vehicle distance control

 Insufficient deceleration within required time

Airbags

 Operational delay following impact

5

Example: Door Lock Control System

250 CAN

messages

with 2500

individual

signals

Door Lock Control

Auto-lock when vehicle in motion

Auto-unlock during emergencies

6

Our First Topic

Source Code

Requirements

Implementation Model

(Fixed-point)

Object Code

Executable

Requirements Model

Model Design・Simulation

(SL/SF)

Model Comparison・Merge

(Report Generator)

Report Generation

(Report Generator)

Model Guideline Check (SLVV)

Model Coverage (SLVV)

Test Case Generation (SLDV)

Design Error Detection (SLDV)

Interface to Requirements

Management Tool (SLVV)

Formal Verification (SLDV)

Auto Code-Generation (EC)

Traceability Report (EC)

Configuration Management (Simulink Project)

SIL/PIL Test（EC）
Code Coverage（EC）
Static Code Analysis

(Polyspace)

7

Door Lock Control Software Requirements

8

Door Lock Model

Simulink / Stateflow

Diagnostic

Function

Door Lock

Request Function

Diagnostic Function

State Transition Diagram

Increased Readability /

Productivity through

Graphical Modeling

9

Door Lock Test Model

Simulink / Simscape

Model Block used to call control model

Plant Model

Test Input

Simulation vs.

Expected

Results

Comparison

Fail On/Off

Switch

Able to execute various tests

using the control model

10

Requirements & Logic Testing through Simulation

Simulink / Stateflow

 Early verification of entire system incl. plant behavior

 Investigation of failure/anomaly modes (difficult on H/W)

Test data definition in Signal Builder Simulation Results

11

MATLAB/Simulink Products

MATLAB
 Easy data processing
 Concise programming

language
 Abundant mathematical

functions ・ file I/O
 2-D/3-D visualization

functionality

Simulink
 Block diagram modeling
 Abundant block library
 High-precision time simulation

Stateflow
 Flowcharts, State Diagrams,

State Transition Tables

Technical Computing

Environment

Model-Based Design

Environment

12

Model Difference Comparisons
Simulink Report Generator

 Generate reports on difference comparisons between 2 models

– Compatible with Simulink Project and version management software

（i.e. Subversion）

Green：Component mismatch

Red：Parameter mismatch

13

The Next Topic

Source Code

Requirements

Implementation Model

(Fixed-point)

Object Code

Executable

Requirements Model

Model Design・Simulation

(SL/SF)

Model Comparison・Merge

(Report Generator)

Report Generation

(Report Generator)

Model Guideline Check (SLVV)

Model Coverage (SLVV)

Test Case Generation (SLDV)

Design Error Detection (SLDV)

Interface to Requirements

Management Tool (SLVV)

Formal Verification (SLDV)

Auto Code-Generation (EC)

Traceability Report (EC)

SIL/PIL Test（EC）
Code Coverage（EC）
Static Code Analysis

(Polyspace)

Configuration Management (Simulink Project)

14

Ensure Traceability

Requirement⇔Model⇔Test

Simulink Verification & Validation

Clarification of effects

of requirement changes

What is being

checked? What is being

modeled?

What is being tested?

15

Model Coverage for Measuring

Test Completeness Level

Simulink Verification & Validation

Check for

insufficient testing

Cumulative

coverage results

on multiple tests

Identify areas of

missing coverage

16

Generate Tests for Full Model Coverage

Simulink Design Verifier

 Automatic test generation

 Suitable for equality tests

Test Harness Model

Auto-generated

Test Data

※ Able to generate

missing tests based

on user-defined tests

17

Identification of Software Design Errors

Simulink Design Verifier

 Check for risks of software design errors

prior to implementation
Integer overflow, division by zero, range violations, dead logic

Fix

Overflow Identified No risk of overflow

Example: Modify block

parameter

18

Simulink Verification and ValidationTM (SLVnV)

Measure Model Coverage

Model Coverage

Report

• Decision

• Condition

• MC/DC

Traceability

Analysis

Auto-Generate Test Cases Property Proving (Formal Methods)

V&V

Spec

Reqmt

Spec
Controller Model

Verification Model

Design Error Detection

Auto-detect design

errors
• Division by zero

• Range overflow

• Deadl Logic

• Saturation overflow

• Out of bounds access

Requirement to Model
(Word/Excel/DOORS/MKS Integrity)

Model to Requirement

Word

Excel

DOORS

MKS Integrity

Model Checker (Model Advisor)

• GUI for Model Checks

• Automate corrections

on warnings

• Report Generation

• Add Custom Checks

TT,TF,FT

Simulink Design VerifierTM (SLDV)

Test Data Sufficiency Check Requirement Sufficiency Check Automate Model Checking

100% Coverage Test Data Certify Correct BehaviorAutomate Error Detection

Controller

Model

Model Verification & Validation Products

19

The Final Topic

Source Code

Requirements

Implementation Model

(Fixed-point)

Object Code

Executable

Requirements Model

Model Design・Simulation

(SL/SF)

Model Comparison・Merge

(Report Generator)

Report Generation

(Report Generator)

Model Guideline Check (SLVV)

Model Coverage (SLVV)

Test Case Generation (SLDV)

Design Error Detection (SLDV)

Interface to Requirements

Management Tool (SLVV)

Formal Verification (SLDV)

Auto Code-Generation (EC)

Traceability Report (EC)

Configuration Management (Simulink Project)

SIL/PIL Test（EC）
Code Coverage（EC）
Static Code Analysis

(Polyspace)

20

Generate Code from Controller Model

Embedded Coder

 Auto-generate C-code of high readability/efficiency

 Option settings for variable attributes, function

settings, code style, etc.

 Auto-generate scaling for fixed-point design

if (LockMode == FAILURE) {

LockRequest = FALSE;

} else {

LockRequest =

((spd_time >= Speed_time) &&

Engine_ON && (!Airbag_ON));

}

Auto-generate

code

21

Ensuring Traceability between

Requirements, Models, and Code

Embedded Coder / Simulink Report Generator

 Reflect model

specifications in

generated code

 Distribute reports with

model views (html)

Code⇔Document Link

Code⇔Model Link

Code Generation Report

22

Model⇔Code Equality Checks

（SIL/PIL, Back 2 Back Test）
Embedded Coder

※ Test automation through Simulink Test.

Efficient testing by reuse of model

verification test data

Existing data/SLDV

generated test data

Model/Code Results

Comparison

Model/Code

Selection

23

Tool Chain Example: Product List

Product Functionality Usage

Simulink Modeling: Controller Block Modeling

Module/Integration Test

Stateflow Modeling: State Transitions,

Flow Charts

Modeling

Fixed-Point Designer Modeling: Fixed-Point Processing Modeling

Simulink Verification

and Validation

Model Coverage

Requirements Interface

Model Advisor

Module/Integration Test

Review and Static Analysis

Simulink Design Verifier Property Proving

Test Generation

Design Error Detection

Review and Static Analysis

Embedded Coder Code Generation

PIL Test/CGV

Bullseye/LDRA Integration

Traceability Report

Code Generation

Equality Testing

Code Coverage Measurement

IEC Certification Kit Traceability Matrix Generation

Templates for Certification

ISO26262 Support

Simulink Report

Generator

Report Editing and Generation Report Generation

Model Comparison/Merge

24

Proving Source Code Correctness
Polyspace Code Prover: Static Code Verification

 Quality

– Prove absence of runtime

errors (RTEs)

– Measure, Improve, Manage

 Usage

– No need to compile, execute,

or generate test cases

– Supports：C/C++/Ada

 Process

– Early detection of RTEs

– Analyze both hand-code and

auto-generated code

– Measure code reliability

Analyze all executable paths to detect errors and prove the absence of errors

static void pointer_arithmetic (void) {

int array[100];

int *p = array;

int i;

for (i = 0; i < 100; i++) {

*p = 0;

p++;

}

if (get_bus_status() > 0) {

if (get_oil_pressure() > 0) {

*p = 5;

} else {

i++;

}

}

i = get_bus_status();

if (i >= 0) {

*(p - i) = 10;

}

}

Green: reliable
safe pointer access

Red: faulty
out of bounds error

Gray: dead
unreachable code

Orange: unproven
may be unsafe for some

conditions

variable ‘I’ (int32): [0 .. 99]

assignment of ‘I’ (int32): [1 .. 100]

Range data
tool tip

Purple: violation
MISRA-C/C++ or JSF++

code rules

25

ISO26262 Functional Safety Standard

 Functional safety standard for automotive equipment

 Based on IEC61508

 Description of purpose and requirements for development

– Activities for development process （Software safety life cycle）

– Development and verification tools （Tool qualification）

 Description of new software engineering concepts

– Model-based development

– Early verification and validity checks

– Automatic code generation

26

Model-Based Design Benefits（ISO26262 excerpt）

The seamless utilization of models facilitates a highly consistent and efficient development.

27

MathWorks Solution: Summary

Using Models to Detect Errors Early and

Increase Efficiency

Source Code

Requirements

Implementation Model

(Fixed-point)

Object Code

Executable

Requirements Model

Requirements Linking (SLVV)
Formal Verification (SLDV)

Model Guideline Check (SLVV
Model Coverage Test (SLVV
Test Case Auto-Generation
(SLDV)

Report Auto-Generation
(Report Generator)

・Able to form small V-loops

・Able to detect errors early

in the development cycle

 Mode⇔Code consistency allows

for Simulink simulation results to

be considered “truth”.

 Early model verification is

possible due to the ability to

investigate floating-point models

 Large team development made

easy through highly

customizable tool chain

 Errors in object code detected

easily through synchronization

between simulations and

SILS/PILS

SILS/PILS (EC)
Runtime Error
Identification
(Polyspace)

