
Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit

20 - 23 August 2007, Hilton Head, South Carolina

Copyright © 2007 by The MathWorks.

1

The Use of Computing Clusters and Automatic Code
Generation to Speed Up Simulation Tasks

Jason R. Ghidella1, Amory Wakefield2, Silvina Grad-Freilich3, Jon Friedman4 and Vinod Cherian5
The MathWorks, Inc. Natick, MA, 01760

This paper studies a number of different techniques that can be used to reduce the
amount of time needed to run block diagram simulations. The first is automatic code
generation techniques used to create simulation executables from graphical block diagram
models. A number of alternative techniques are studied, highlighting increases in simulation
speed that can be achieved at the expense of interactivity with the graphical model. This
paper will discuss at which stages of modeling and simulation code generation should be
considered. The second technique that is studied is the use of computing clusters to
distribute a number of simulation runs across a number of processors. With the advent of
the multicore processor this technique has become accessible to many more engineers than
in the past.

I. Introduction
HE use of modeling and simulation has become widespread in the development of embedded systems, driven
primarily by the popularity of Model-Based Design1,2,3. Migrating to a workflow using Model-Based Design has

many benefits, including improving the resulting design, shortening development time and costs, and reducing
design errors. Model-Based Design provides insight into system behavior without the need to use physical
prototypes of the system, which in turn enables engineers to gain this understanding early in the development
process. There are many examples that illustrate the value of using models for the early detection of errors or gaps in
the requirements and design, for better understanding of the system behavior, and for evaluating different design
scenarios.

A drawback in modeling and simulation is that time must be invested to build the model, and the time required

can be significant when that model is written in a programming language such as C. This has driven the use of
commercial off-the-shelf (COTS) software in the development and simulation of models for embedded systems,
especially when the software can provide specialized, domain-specific functionality, because it can shorten the
modeling and design process by making it easier to develop high fidelity models of embedded systems4,5,6.

As COTS software has made it easier to implement Model-Based Design for embedded systems, the use and

reuse of those models throughout an organization continues to increase. Organizations are also finding new
applications and ways to take advantage of the intellectual property that is contained within these models. Many of
these applications require simulating the model multiple times for various purposes.

For example, design exploration studies, Monte Carlo analysis, robustness testing, parameter sweeps,

requirements analysis, bit error rate (BER) calculations, and other verification and validation activities all rely on
multiple simulation iterations. Running the model many times on different test cases provides insight to the
engineer for refining and improving their design, as well as verifying the design is meeting the system requirements.
Each of these runs may take hours to complete. Depending upon the complexity of the model, simulation time can
become a critical bottleneck in the development process. One way to speed up verification tasks is to automate test

1 Manager, Technical Marketing, 3 Apple Hill Drive, Natick, MA, 01760, AIAA member.
2 Technical Marketing Manager, 3 Apple Hill Drive, Natick, MA, 01760.
3 Manager, Parallel Computing Marketing, 3 Apple Hill Drive, Natick, MA, 01760.
4 Manager, Aerospace, Defense and Automotive Marketing, 3 Apple Hill Drive, Natick, MA, 01760.
5 Technical Marketing Specialist, 3 Apple Hill Drive, Natick, MA, 01760.

T

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit

20 - 23 August 2007, Hilton Head, South Carolina

Copyright © 2007 by The MathWorks.

2

cases. Storing these test cases independently of the model allows them to be easily reused as the model is refined
over time. Alone, this does not fully resolve the time bottleneck, but in combination with other techniques, it can
greatly reduce the time spent on multiple simulations.

Other activities such as algorithm prototyping, processor-in-the-loop (PIL), or hardware-in-the-loop (HIL)

simulations rely on techniques to automatically generate code from the model. This code can then be targeted to
microprocessors, DSPs or FPGAs that interact with prototype hardware in real time7,8. Expanding the use of code
generation for simulation acceleration can also help alleviate the simulation speed bottleneck discussed above;
however, it alone cannot completely address
the need for faster simulations.

This has driven a call for the ability to

run simulations in a high-performance
computing (HPC) environment. In the past,
HPC was available mainly to government
agencies and large research laboratories,
because only these groups had the means to
purchase supercomputers. Today, most
supercomputers have been replaced by
COTS computer clusters that provide
affordable, high-performance, distributed
environments. In addition, the number of
available clusters is growing rapidly. HPC is
now at all-time high of $10 billion in
hardware revenue in 2006 and a growth of
more than 20% over last 4 years9.

With the increased availability of

multicore and multiprocessor computers, and the growth of computing clusters, access to vast CPU processing
power is now within the reach of many engineers. By combining computing clusters with code generation
technology, models can be easily built with COTS software, and simulation tasks can be completed orders of
magnitude faster.

In this paper, we will discuss multiple techniques to reduce the time needed to complete Model-Based Design

tasks with the COTS software tools, MATLAB®10 and Simulink®11 from The MathWorks. This will include the use
of HPC clusters, code generation technology, and test reuse. Examples and benchmarks will be discussed that
demonstrate the typical increase in performance that can be achieved.

II. Using Code Generation for Simulation Acceleration
There are many reasons a model may take a long time to simulate, some of which are described in the previous

section. The rest of this paper will use examples based on Simulink models, and some specific techniques and tools
developed to speed up the simulation time of Simulink models. The Simulink User’s Guide10 discusses some of the
common reasons why a simulation can take a long time to run, from having a model that contains an algebraic loop,
to setting the maximum step size too small, or simply having too many scopes in the model.

When these common reasons for simulation slow down have been investigated and corrected and the model still
simulates slower than desired, the use of automatically generated C code to speed up the simulation should be
considered. However, converting the graphical model into an executable loses many of the benefits of modeling the
system in a COTS block diagram software tool. With this in mind, an engineer may wonder if modeling should be
done in a programming language like C from the start. When compared to a programming or scripting language, a
block diagram tool can save large amounts of time in describing and defining a system. Additionally, even if
describing the system is easy to do in C, solving that system through time, and debugging the C code is a lot more
difficult than debugging a graphical model.

Because it is easier to build and debug models in a graphical block diagram, using C code to accelerate
simulation is more effective later in the development process. A good point to consider using C is when engineers
start using, rather than building, the model. That is, when they start simulating the model many times without

Speed

In
te

ra
ct

iv
ity

Figure 1. Simulation speed relationship to model interactivity. In
general, simulation speed increases as model interactivity
decreases.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit

20 - 23 August 2007, Hilton Head, South Carolina

Copyright © 2007 by The MathWorks.

3

changing its structure. Some tasks that require this include: investigating the full design space, robustness testing to
ensure the design can deal with uncertainties, and verification and validation tasks to ensure the implementation
does what is required and is the right design. At these times, the structure of the model is well defined, and the only
changes that will be made to the model are typically input signals and model parameters.

The reason C code should only be considered once the behavior of the system has been defined and validated is
illustrated in Figure 1. In general, as the simulation speed increases, the user will have less flexibility in running and
interacting with the simulation. For example, debugging tools will not be available or some modeling semantics may
not be compatible. Finally, it takes time to generate the C code from the model. So, when engineers are constructing
a model or changing the model structure as the model is validated, the code will have to be rebuilt not only each
time a simulation occurs but also if they simply update the diagram to ensure all the signal data types are consistent
in the model. This can consume more time than the savings gained from running the simulation at compiled C code
speeds.

This means that as an engineer builds a model, using the default simulation mode (Normal) will be the most

efficient. When the engineer then wants to use that model, switching the simulation mode to one based on code
generation can then be a better approach if the simulation is not running fast enough. At this stage the model is well
defined and the focus is now on having the simulations run as fast as they can.

The value of working with Simulink is that engineers can realize all the benefits of a COTS graphical block

diagram tool to build system models quickly and then use a simulation mode that automatically creates a compiled
executable of that model so that they can achieve compiled C code simulation speeds as well without having to leave
the graphical environment.

A. Simulink Simulation Acceleration Modes
Simulink offers four simulation modes (Normal, Accelerator, Rapid Accelerator, and External), to help build,

execute, and debug models. Two of these simulation modes, Accelerator, and Rapid Accelerator, use code
generation technology to generate a compiled executable of the model. The underlying C code for the model is not
accessible by the user for either of the executables generated by the Accelerator or Rapid Accelerator modes.

While running accelerated simulations, the user is still able to interact with the Simulink model, such as view

signals on scopes, but this interaction does decrease as the user moves from the default, Normal mode, to
Accelerator mode, to Rapid Accelerator mode. For example, if the Simulink model contains an algebraic loop
(where the input of a block with direct feedthrough is driven by the output of the same block), neither acceleration
mode will work. If the model contains blocks that cannot generate C code, for example a Transport Delay or
MATLAB Fcn block, the Accelerator mode will interpret those blocks at reduced speed, whereas the Rapid
Accelerator mode will not work. The Accelerator mode is compatible with the Simulink Profiler and Debugger,
whereas the Rapid Accelerator mode is not.

Users do not need to set up the code generation process to use these simulation modes. They are shielded from

this because all they need to do is to select the mode itself. Once the simulation is started, a compiled executable is
then generated, if needed, before the simulation starts running. The only option the user selects is the compiler
optimization level: turned off for faster build times or turned on for faster simulation speeds at the expense of longer
build times.

The final simulation mode, External mode, forms a communications link between a model running in Simulink

and code from that model running on a target system. In External mode, the Simulink model is the user interface to
the external code, enabling users to download modifications to block parameters to the external code, and view
signals from the external code in real time.

The Accelerator mode is the more general purpose of the two simulation acceleration modes. It creates a

compiled executable for the parts of the model that can be compiled into C code and uses the interpreted mode for
the other blocks. It provides a high level of interactivity so that the user can use this mode even during the model
construction and debugging phases if needed. The compiled executable is solved through time using Simulink
solvers. This compiled executable runs in the same process as MATLAB and Simulink. Block parameters in the
model can be changed while the simulation is running, and scopes and animation display as the simulation runs.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit

20 - 23 August 2007, Hilton Head, South Carolina

Copyright © 2007 by The MathWorks.

4

Extensive analysis is performed to avoid unnecessary rebuilding of code for simple changes to the model such as
changing the simulation stop time or the solver type.

The Rapid Accelerator mode is more restrictive and will only work with models containing blocks that can

compile into C code. The Rapid Accelerator mode creates a standalone executable from a model that also includes
the specific solver methods for that model. Simulink does not solve the model through time, as it does in the
Accelerator mode. The standalone executable created by the Rapid Accelerator mode runs as a process separate
from MATLAB and Simulink, so, if a second processing core is available, it will take advantage of that core.
Significant speed increases in simulation time can be achieved with this mode. Block parameters can be changed
without rebuilding only if they have been defined as tunable parameters. Changes to the solver type or stop time,
however, will necessitate a rebuild of the code. In general, the Rapid Accelerator mode will require rebuilds more
frequently than the Accelerator mode.

B. Simulation Target
If engineers need access to the underlying code that is generated from the model, or they want to distribute that

code on different targets, they can do so using Real-Time Workshop®12 from The MathWorks. Real-Time
Workshop generates ANSI/ISO C/C++ code from Simulink models. Using target template files engineers can
specify on which environment the code will run. One target template that is specific to simulation acceleration is the
Rapid Simulation target (RSim).

RSim is a separate executable from Simulink that is executed from a DOS command line (on Windows

platforms), thus requiring scripts to get data into and out of the executable. RSim is compatible with External mode,
so engineers are still able to interact with the executable through the Simulink model. This, however, is not as
convenient as the Rapid Accelerator mode that has automated the interaction between the simulation executable and
the model.

RSim has a slight speed advantage over the Rapid Accelerator mode in running simulations, because there is no

check to see if the model is up to date. RSim starts simulating immediately, whereas the Rapid Accelerator mode
first checks to see if the model has changed before the simulation begins.

C. Benchmarking results
Simulation acceleration can be difficult to quantify, given that the factors that can slow down a particular

simulation could stem from a wide range of issues. Some of these are described in the previous sections. Because
there are so many factors that need to be taken into account that can affect overall simulation speed, it is not possible
to define a benchmark that will be representative of every situation.

In this paper, we do not

attempt to present an
exhaustive set of examples
to show how these factors
can affect overall
simulation speed using
different techniques.
Instead, one example is
presented using a model of
a fault detection, isolation,
and recovery (FDIR)
subsystem for a redundant
elevator control system that
has been described in detail
in previous work13,14.
Figure 2 shows a view of
the FDIR subsystem model, which provides a means to study, in simulation, the effects of one or multiple failures in
the actuation system of the elevators in an aircraft. The model contains 897 Simulink blocks and a comparable
amount of Stateflow® logic and is representative of a component of a larger complex vehicle system model.

Figure 2. View of the top level model used to benchmark the performance of
simulation modes.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit

20 - 23 August 2007, Hilton Head, South Carolina

Copyright © 2007 by The MathWorks.

5

Figure 3 shows the clock time taken to run 16
different fault scenarios, each of which are
simulating 1000 seconds of the dynamics of the
FDIR subsystem model. The height of the blue bars
represents the time needed to complete the
simulation tasks using different simulation modes
and RSim. The height of the red bars represents the
additional overhead required to execute the
simulation. This overhead is composed of such tasks
as update diagram, code generation, code
compilation and resource allocation before
executing the simulation.

As expected, Normal mode is the slowest,

requiring 1232 seconds to simulate 1000 seconds of
simulation time for the 16 different fault scenarios.
This is because Normal mode does not compile any
blocks. The Accelerator mode is faster, taking 812
seconds for the same simulation tasks. The speed up
is provided by using precompiled code. The red
stack representing overhead time in Figure 3
includes the one-time cost of generating the
compiled code and post-processing of the compiled
code. At 166 seconds of execution time, the Rapid
Accelerator mode provides further increase in speed.
Note, however, that the overhead is now higher,
because the compiled code has to pass stricter
checks between simulation runs to ensure model
fidelity. RSim is the fastest, taking just 75 seconds
to complete the simulation tasks.

III. Using a Computing Cluster to Speed Up Simulations

Code generation techniques can help decrease the time require for one simulation. Today’s complex systems and

safety-critical applications require evaluating or testing multiple scenarios of a design. This is one reason many
organizations have turned to Model-Based Design. Model-Based Design makes it much easier and more cost-
effective to iterate designs, verify and validate designs, and test designs. It enables engineers to wait until the model
is complete and finalized before building costly, long lead-time prototypes and using limited, expensive lab time.
Engineers can use hardware and lab testing only to verify that the simulation results match the real system, rather
than using it as a design step. Simulations also allow engineers to model events or conditions that may be difficult to
recreate in a lab environment, such as extreme temperatures or crash testing.

There are many techniques that engineers use to simulate their designs over the large parameter spaces required

by design exploration studies, robustness testing, or BER. Design of Experiments (DOE) and Monte Carlo analysis
are two techniques that require evaluating multiple scenarios. In fact, a major benefit of using Design of
Experiments techniques is to limit the number of scenarios that need evaluation. This is because building, or even
modeling, all possible scenarios is impractical—it takes too long. To reduce evaluation or testing time even further
requires more innovation. The ability to run simulations in a HPC environment is one approach that was once
prohibitively expensive to implement due to the cost of installing and maintaining sufficient computing power. With
the expansion of multicore and multiprocessor computers, and the growth of computing clusters, vast CPU
processing power is already installed in many organizations’ sites. Taking advantage of that computing power using
the same tools installed on an engineer’s desktop is not always so straightforward. In fact, the difficulty in setting up
distributed applications is still a barrier to tapping the processing power in one computer, let alone a cluster of
perhaps hundreds. Yet, taking advantage of this resource is a critical step to speeding up simulations, as well as
increasing the number of simulations that can be reasonably run.

Normal Accelerator Rapid Accelerator RSim
0

200

400

600

800

1000

1200

1400

Simulink simulation mode

T
im

e
ta

ke
n

 fo
r

16
 s

im
u

la
tio

n
s

o
f 1

00
0

se
co

n
d

s
 o

f s
im

u
la

tio
n

 ti
m

e
fo

r
th

e
m

o
d

el

Plot of time taken for simulation versus simulation mode

Model execution time

Overhead time

Figure 3. Plot showing the time taken for simulating the
task using different Simulink simulation modes.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit

20 - 23 August 2007, Hilton Head, South Carolina

Copyright © 2007 by The MathWorks.

6

Some problems are called distributed or coarse-grained because they can be segmented easily to run on several
nodes without communication, shared data, or synchronization points between the nodes. Monte Carlo simulations
fall into this category, and thus are an obvious candidate to run on computing clusters. Getting an individual’s
simulations to the cluster or onto multiple processors, particularly from within a block diagram software tool, is not
always as obvious. One
possibility is to compile the
model into an executable and
then script the parameter
variations, communication
with a scheduler, and job
creation. This can be tedious
and often requires help from
a cluster administrator to
customize a particular
simulation setup. The
MathWorks has responded to
this need by providing
distributed computing tools
that make it possible to
distribute complete Simulink
models for execution in a
cluster or in a multicore or
multiprocessor computer without the need to write any lines of code.

SystemTest15 and Distributed Computing Toolbox16 make it possible to set up a series of parameters in a

Graphical User Interface (GUI) to vary in a Simulink model for Monte Carlo or DOE and then define it as a job to
be run on multiple processors. Launching the job from SystemTest requires only a checkbox, as shown in Figure 4.

MATLAB® Distributed Computing Engine17 schedules and executes the job on available workers, which are

MATLAB processes running on a cluster. A system or cluster administrator can setup a configuration file and make
it available to all who want to use the cluster. That file contains information about the particular scheduler in the
cluster and the shared directories that may be needed. Each worker requires only the MATLAB engine license;
separate toolbox and blockset licenses are not required. The distributed computing tools implement dynamic
licensing, which enables the workers to run software that uses any eligible MATLAB toolboxes or Simulink
blocksets for which users are licensed on the computer sending the job.

IV. Combining Code Generation with a Computing Cluster
For maximum benefit, both code generation techniques and a computing cluster can be used. SystemTest and

Distributed Computing Toolbox can run a
Simulink model in any of the simulation modes.
Thus, users can take advantage of the fastest
speed for each single simulation run, as well as
distributing the faster simulations across
multiple machines.

Figure 5 demonstrates the speed

improvement achieved by distributing the tasks
used in Section II C of this paper on a
computing cluster of up to eight machines.
Table 1 lists the performance improvement as a
factor of the base rate of one machine running
the task. For example, executing the simulation
in the Normal mode on two workers produced a
2.0x speed improvement over a Normal mode
simulation on one machine. Similarly,

Figure 4. The SystemTest desktop showing an example of using multiple
processors by selecting a checkbox in the GUI.

 Figure 5. Plot of speed-up achieved using different simulation
modes over multiple processors.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit

20 - 23 August 2007, Hilton Head, South Carolina

Copyright © 2007 by The MathWorks.

7

executing a Rapid Acceleration mode simulation of the task on eight workers produced a 26x speed improvement
over a Normal mode simulation on a single machine.

As can be seen in Figure 5 and Table 1, the speed improvement is not linearly dependent on the number of

workers. This is because distributing the tasks adds its own overhead, namely, copying over the files from the
development machine to each
machine on the cluster,
transmitting the input and
output data between the
workers and the job manager
– in this case the MathWorks
job manager provided with
the MATLAB Distributed
Computing Engine, and the
network latency. In general, total simulation time should be significantly longer than this overhead to achieve speed
benefits from distributing tasks.

In the example, the Rapid Accelerator mode shows decreasing rates of improvement as the tasks are distributed

among four and eight workers. The effect is less pronounced in the case of the Normal mode simulations. This is
different from the results in Figure 3, where the example has eliminated the overhead from the model build process
for the Accelerator and Rapid Accelerator modes. This
is because the Accelerator and Rapid Accelerator
modes do not need to rebuild the code on the single
processor; once the model has been built, unless there
is a change in the model structure, it can just rerun the
same executable for each simulation task. When the
simulation is distributed, each worker must build the
code once. The results obtained here are specific to the
model and the example cases used.

The dedicated cluster of machines used for this

example consists of four identical Dell OptiPlex
SX280s18 with dual core processors running at 2.8GHz
and with 1GB of shared memory on each machine.
These machines are connected to each other via a
dedicated router and subnetwork. The router is also
connected via a larger network to a dual core,
1.83GHz IBM T60 laptop with 1GB of memory that is
used to prototype the code and run the scheduler. All
the machines on the cluster were running the 32-bit
Windows XP operating system. Figure 6 shows the
topology of the computing cluster. Distributed
Computing Toolbox and MATLAB Distributed Computing Engine support other platforms and heterogeneous
computing clusters with different machines running different operating systems. Different network topology or
machine architecture could make a difference to the results obtained, in addition to the other factors discussed in the
paper.

RSim was not investigated in this section as it involves the manual generation of target executables that are

specific to platform architecture and operating system. RSim is expected to produce similar results to the Rapid
Accelerator mode as more workers are added to the cluster.

V. Conclusion
There are many reasons engineers need to run simulations faster. This paper has presented several methods that

can be used to reduce the time taken to run simulations. The choice of techniques depends heavily on the user’s
specific task and should take into consideration such things as debug needs, network communication overhead, total

 Number of cores
Simulation mode

1 2 4 8

Simulink Normal mode 1.0x 2.0x 2.7x 4.0x
Simulink Accelerator mode 1.5x 3.0x 4.4x 6.5x
Simulink Rapid Accelerator mode 7.4x 14x 21x 26x
Table 1: Performance gains to be had from different simulation modes and
distributing the simulation on a cluster.

 Figure 6. Network topology and schematic of the
cluster used to perform tests in the distributed
simulation.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit

20 - 23 August 2007, Hilton Head, South Carolina

Copyright © 2007 by The MathWorks.

8

simulation time, compile time (for code generation techniques), access to processing power and maturity of the
model.

The Simulink example shown in the paper proves that tools from The MathWorks can be successful in achieving

more than 20x improvement in total time spent running a simulation using only eight processors and a relatively
short number of simulation tasks. It is possible to see how beneficial these techniques could be when a single
simulation takes hours to run. This paper has addressed several methods by which faster speeds can be achieved
running Simulink models. As HPC clusters and multicore computers become more prevalent, these improvements
will be achievable by all engineers.

References

1 Barnard, P., “Graphical Techniques for Aircraft Dynamic Model Development,” AIAA Modeling and Simulation
Technologies Conference and Exhibit, Providence, Rhode Island, Aug. 2004, CD-ROM.

2 Aberg, R., and Gage, S., “Strategy for Successful Enterprise-Wide Modeling and Simulation with COTS Software,” AIAA
Modeling and Simulation Technologies Conference and Exhibit, Providence, Rhode Island, Aug. 2004, CD-ROM, ID: 2004-
4929.

3 Krasner, J., “Model-Based Design and Beyond: Solutions for Today’s Embedded Systems Requirements,” Embedded
Market Forecasters, American Technology International, Framingham, MA, January 2004.

4 Wood, G. D., and Kennedy, D. C., “Simulating Mechanical Systems in Simulink® and SimMechanics”, Technical Report
91124v00, The MathWorks, Inc., Natick, MA, 2003.

5 Denery, T., Ghidella, J. R., Mosterman, P. J., and Shenoy, R., “Creating Flight Simulator Landing Gear Models Using
Multidomain Modeling Tools”, AIAA Modeling and Simulation Technologies Conference and Exhibit, Keystone, Colorado, Aug.
2006, CD-ROM, ID: 2006-6821.

6 Popinchalk, S., Glass, J., Shenoy, R., and Aberg, R, “Working in Teams: Modeling and Control Design within a Single
Software Environment”, AIAA Modeling and Simulation Technologies Conference and Exhibit, Hilton Head, South Carolina,
Aug. 2007, CD-ROM.

7 Hodge, G., Ye, J., and Stuart, W., “Multi-Target Modelling for Embedded Software Development for Automotive
Applications,” 2004 SAE World Congress, 2004-01-0269, SAE International, Detroit, MI, March, 2004.

8 Erkkinen, T., “Multiple Purpose Automatic Code Generation”, AIAA Modeling and Simulation Technologies Conference
and Exhibit, Hilton Head, South Carolina, Aug. 2007, CD-ROM.

9 IDC HPC Briefing at the 2007 International Supercomputing Conference
10 “Getting Started with MATLAB®”, The MathWorks, Natick, MA, September 2007.
11 “Using Simulink®”, The MathWorks, Natick, MA, September 2007.
12 “Real-Time Workshop® User’s Guide”, The MathWorks, Natick, MA, September 2007.
13 Mosterman, P. J., and Ghidella, J., “Model Reuse for the Training of Fault Scenarios in Aerospace,” Proceedings of the

AIAA Modeling and Simulation Technologies Conference, Providence, RI, Aug. 2004, CD-ROM, ID: 2004-4931.
14 Ghidella, J., and Mosterman, P., J., “Requirements-Based Testing in Aircraft Control Design”, ,” Proceedings of the AIAA

Modeling and Simulation Technologies Conference, San Francisco, CA, Aug. 2005, CD-ROM, ID: 2005-5886.
15 “SystemTest User’s Guide”, The MathWorks, Natick, MA, September 2007.
16 “Distributed Computing Toolbox User’s Guide”, The MathWorks, Natick, MA, September 2007.
17 “MATLAB® Distributed Computing Engine System Administrator's Guide”, The MathWorks, Natick, MA, September

2007.
18 http://www.dell.com/html/us/products/optiplex/sx280.html

