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This paper studies a number of different techniques that can be used to reduce the 
amount of time needed to run block diagram simulations. The first is automatic code 
generation techniques used to create simulation executables from graphical block diagram 
models. A number of alternative techniques are studied, highlighting increases in simulation 
speed that can be achieved at the expense of interactivity with the graphical model. This 
paper will discuss at which stages of modeling and simulation code generation should be 
considered. The second technique that is studied is the use of computing clusters to 
distribute a number of simulation runs across a number of processors. With the advent of 
the multicore processor this technique has become accessible to many more engineers than 
in the past.  

I. Introduction 
HE use of modeling and simulation has become widespread in the development of embedded systems, driven 
primarily by the popularity of Model-Based Design1,2,3. Migrating to a workflow using Model-Based Design has 

many benefits, including improving the resulting design, shortening development time and costs, and reducing 
design errors. Model-Based Design provides insight into system behavior without the need to use physical 
prototypes of the system, which in turn enables engineers to gain this understanding early in the development 
process. There are many examples that illustrate the value of using models for the early detection of errors or gaps in 
the requirements and design, for better understanding of the system behavior, and for evaluating different design 
scenarios. 

 
A drawback in modeling and simulation is that time must be invested to build the model, and the time required 

can be significant when that model is written in a programming language such as C. This has driven the use of 
commercial off-the-shelf (COTS) software in the development and simulation of models for embedded systems, 
especially when the software can provide specialized, domain-specific functionality, because it can shorten the 
modeling and design process by making it easier to develop high fidelity models of embedded systems4,5,6. 

 
As COTS software has made it easier to implement Model-Based Design for embedded systems, the use and 

reuse of those models throughout an organization continues to increase. Organizations are also finding new 
applications and ways to take advantage of the intellectual property that is contained within these models. Many of 
these applications require simulating the model multiple times for various purposes.  

 
For example, design exploration studies, Monte Carlo analysis, robustness testing, parameter sweeps, 

requirements analysis, bit error rate (BER) calculations, and other verification and validation activities all rely on 
multiple simulation iterations.  Running the model many times on different test cases provides insight to the 
engineer for refining and improving their design, as well as verifying the design is meeting the system requirements. 
Each of these runs may take hours to complete. Depending upon the complexity of the model, simulation time can 
become a critical bottleneck in the development process. One way to speed up verification tasks is to automate test 
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cases. Storing these test cases independently of the model allows them to be easily reused as the model is refined 
over time. Alone, this does not fully resolve the time bottleneck, but in combination with other techniques, it can 
greatly reduce the time spent on multiple simulations. 

 
Other activities such as algorithm prototyping, processor-in-the-loop (PIL), or hardware-in-the-loop (HIL) 

simulations rely on techniques to automatically generate code from the model. This code can then be targeted to 
microprocessors, DSPs or FPGAs that interact with prototype hardware in real time7,8. Expanding the use of code 
generation for simulation acceleration can also help alleviate the simulation speed bottleneck discussed above; 
however, it alone cannot completely address 
the need for faster simulations. 

  
This has driven a call for the ability to 

run simulations in a high-performance 
computing (HPC) environment. In the past, 
HPC was available mainly to government 
agencies and large research laboratories, 
because only these groups had the means to 
purchase supercomputers. Today, most 
supercomputers have been replaced by 
COTS computer clusters that provide 
affordable, high-performance, distributed 
environments. In addition, the number of 
available clusters is growing rapidly. HPC is 
now at all-time high of $10 billion in 
hardware revenue in 2006 and a growth of 
more than 20% over last 4 years9. 

 
With the increased availability of 

multicore and multiprocessor computers, and the growth of computing clusters, access to vast CPU processing 
power is now within the reach of many engineers. By combining computing clusters with code generation 
technology, models can be easily built with COTS software, and simulation tasks can be completed orders of 
magnitude faster. 

 
In this paper, we will discuss multiple techniques to reduce the time needed to complete Model-Based Design 

tasks with the COTS software tools, MATLAB®10 and Simulink®11 from The MathWorks. This will include the use 
of HPC clusters, code generation technology, and test reuse. Examples and benchmarks will be discussed that 
demonstrate the typical increase in performance that can be achieved. 

II. Using Code Generation for Simulation Acceleration 
There are many reasons a model may take a long time to simulate, some of which are described in the previous 

section. The rest of this paper will use examples based on Simulink models, and some specific techniques and tools 
developed to speed up the simulation time of Simulink models. The Simulink User’s Guide10 discusses some of the 
common reasons why a simulation can take a long time to run, from having a model that contains an algebraic loop, 
to setting the maximum step size too small, or simply having too many scopes in the model. 

When these common reasons for simulation slow down have been investigated and corrected and the model still 
simulates slower than desired, the use of automatically generated C code to speed up the simulation should be 
considered. However, converting the graphical model into an executable loses many of the benefits of modeling the 
system in a COTS block diagram software tool. With this in mind, an engineer may wonder if modeling should be 
done in a programming language like C from the start.  When compared to a programming or scripting language, a 
block diagram tool can save large amounts of time in describing and defining a system. Additionally, even if 
describing the system is easy to do in C, solving that system through time, and debugging the C code is a lot more 
difficult than debugging a graphical model.  

Because it is easier to build and debug models in a graphical block diagram, using C code to accelerate 
simulation is more effective later in the development process.  A good point to consider using C is when engineers 
start using, rather than building, the model. That is, when they start simulating the model many times without 
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Figure 1. Simulation speed relationship to model interactivity. In 
general, simulation speed increases as model interactivity
decreases. 
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changing its structure. Some tasks that require this include: investigating the full design space, robustness testing to 
ensure the design can deal with uncertainties, and verification and validation tasks to ensure the implementation 
does what is required and is the right design. At these times, the structure of the model is well defined, and the only 
changes that will be made to the model are typically input signals and model parameters. 
 

The reason C code should only be considered once the behavior of the system has been defined and validated is 
illustrated in Figure 1. In general, as the simulation speed increases, the user will have less flexibility in running and 
interacting with the simulation. For example, debugging tools will not be available or some modeling semantics may 
not be compatible. Finally, it takes time to generate the C code from the model. So, when engineers are constructing 
a model or changing the model structure as the model is validated, the code will have to be rebuilt not only each 
time a simulation occurs but also if they simply update the diagram to ensure all the signal data types are consistent 
in the model. This can consume more time than the savings gained from running the simulation at compiled C code 
speeds.  

 
This means that as an engineer builds a model, using the default simulation mode (Normal) will be the most 

efficient. When the engineer then wants to use that model, switching the simulation mode to one based on code 
generation can then be a better approach if the simulation is not running fast enough. At this stage the model is well 
defined and the focus is now on having the simulations run as fast as they can. 

 
The value of working with Simulink is that engineers can realize all the benefits of a COTS graphical block 

diagram tool to build system models quickly and then use a simulation mode that automatically creates a compiled 
executable of that model so that they can achieve compiled C code simulation speeds as well without having to leave 
the graphical environment.  

A. Simulink Simulation Acceleration Modes 
Simulink offers four simulation modes (Normal, Accelerator, Rapid Accelerator, and External), to help build, 

execute, and debug models. Two of these simulation modes, Accelerator, and Rapid Accelerator, use code 
generation technology to generate a compiled executable of the model. The underlying C code for the model is not 
accessible by the user for either of the executables generated by the Accelerator or Rapid Accelerator modes.  

 
While running accelerated simulations, the user is still able to interact with the Simulink model, such as view 

signals on scopes, but this interaction does decrease as the user moves from the default, Normal mode, to 
Accelerator mode, to Rapid Accelerator mode. For example, if the Simulink model contains an algebraic loop 
(where the input of a block with direct feedthrough is driven by the output of the same block), neither acceleration 
mode will work. If the model contains blocks that cannot generate C code, for example a Transport Delay or 
MATLAB Fcn block, the Accelerator mode will interpret those blocks at reduced speed, whereas the Rapid 
Accelerator mode will not work. The Accelerator mode is compatible with the Simulink Profiler and Debugger, 
whereas the Rapid Accelerator mode is not. 

 
Users do not need to set up the code generation process to use these simulation modes. They are shielded from 

this because all they need to do is to select the mode itself. Once the simulation is started, a compiled executable is 
then generated, if needed, before the simulation starts running. The only option the user selects is the compiler 
optimization level: turned off for faster build times or turned on for faster simulation speeds at the expense of longer 
build times.  

 
The final simulation mode, External mode, forms a communications link between a model running in Simulink 

and code from that model running on a target system. In External mode, the Simulink model is the user interface to 
the external code, enabling users to download modifications to block parameters to the external code, and view 
signals from the external code in real time. 

 
The Accelerator mode is the more general purpose of the two simulation acceleration modes. It creates a 

compiled executable for the parts of the model that can be compiled into C code and uses the interpreted mode for 
the other blocks. It provides a high level of interactivity so that the user can use this mode even during the model 
construction and debugging phases if needed. The compiled executable is solved through time using Simulink 
solvers. This compiled executable runs in the same process as MATLAB and Simulink. Block parameters in the 
model can be changed while the simulation is running, and scopes and animation display as the simulation runs. 
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Extensive analysis is performed to avoid unnecessary rebuilding of code for simple changes to the model such as 
changing the simulation stop time or the solver type. 

 
The Rapid Accelerator mode is more restrictive and will only work with models containing blocks that can 

compile into C code. The Rapid Accelerator mode creates a standalone executable from a model that also includes 
the specific solver methods for that model. Simulink does not solve the model through time, as it does in the 
Accelerator mode. The standalone executable created by the Rapid Accelerator mode runs as a process separate 
from MATLAB and Simulink, so, if a second processing core is available, it will take advantage of that core. 
Significant speed increases in simulation time can be achieved with this mode.   Block parameters can be changed 
without rebuilding only if they have been defined as tunable parameters. Changes to the solver type or stop time, 
however, will necessitate a rebuild of the code. In general, the Rapid Accelerator mode will require rebuilds more 
frequently than the Accelerator mode. 

B. Simulation Target 
If engineers need access to the underlying code that is generated from the model, or they want to distribute that 

code on different targets, they can do so using Real-Time Workshop®12 from The MathWorks. Real-Time 
Workshop generates ANSI/ISO C/C++ code from Simulink models. Using target template files engineers can 
specify on which environment the code will run. One target template that is specific to simulation acceleration is the 
Rapid Simulation target (RSim).  

 
RSim is a separate executable from Simulink that is executed from a DOS command line (on Windows 

platforms), thus requiring scripts to get data into and out of the executable. RSim is compatible with External mode, 
so engineers are still able to interact with the executable through the Simulink model. This, however, is not as 
convenient as the Rapid Accelerator mode that has automated the interaction between the simulation executable and 
the model.  

 
RSim has a slight speed advantage over the Rapid Accelerator mode in running simulations, because there is no 

check to see if the model is up to date. RSim starts simulating immediately, whereas the Rapid Accelerator mode 
first checks to see if the model has changed before the simulation begins. 

C. Benchmarking results 
Simulation acceleration can be difficult to quantify, given that the factors that can slow down a particular 

simulation could stem from a wide range of issues. Some of these are described in the previous sections. Because 
there are so many factors that need to be taken into account that can affect overall simulation speed, it is not possible 
to define a benchmark that will be representative of every situation.  

 
In this paper, we do not 

attempt to present an 
exhaustive set of examples 
to show how these factors 
can affect overall 
simulation speed using 
different techniques. 
Instead, one example is 
presented using a model of 
a fault detection, isolation, 
and recovery (FDIR) 
subsystem for a redundant 
elevator control system that 
has been described in detail 
in previous work13,14. 
Figure 2 shows a view of 
the FDIR subsystem model, which provides a means to study, in simulation, the effects of one or multiple failures in 
the actuation system of the elevators in an aircraft. The model contains 897 Simulink blocks and a comparable 
amount of Stateflow® logic and is representative of a component of a larger complex vehicle system model. 

 
Figure 2. View of the top level model used to benchmark the performance of 
simulation modes. 
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Figure 3 shows the clock time taken to run 16 
different fault scenarios, each of which are 
simulating 1000 seconds of the dynamics of the 
FDIR subsystem model. The height of the blue bars 
represents the time needed to complete the 
simulation tasks using different simulation modes 
and RSim. The height of the red bars represents the 
additional overhead required to execute the 
simulation. This overhead is composed of such tasks 
as update diagram, code generation, code 
compilation and resource allocation before 
executing the simulation. 

 
As expected, Normal mode is the slowest, 

requiring 1232 seconds to simulate 1000 seconds of 
simulation time for the 16 different fault scenarios. 
This is because Normal mode does not compile any 
blocks.  The Accelerator mode is faster, taking 812 
seconds for the same simulation tasks. The speed up 
is provided by using precompiled code. The red 
stack representing overhead time in Figure 3 
includes the one-time cost of generating the 
compiled code and post-processing of the compiled 
code. At 166 seconds of execution time, the Rapid 
Accelerator mode provides further increase in speed. 
Note, however, that the overhead is now higher, 
because the compiled code has to pass stricter 
checks between simulation runs to ensure model 
fidelity.  RSim is the fastest, taking just 75 seconds 
to complete the simulation tasks.  

III. Using a Computing Cluster to Speed Up Simulations 
 
Code generation techniques can help decrease the time require for one simulation. Today’s complex systems and 

safety-critical applications require evaluating or testing multiple scenarios of a design. This is one reason many 
organizations have turned to Model-Based Design. Model-Based Design makes it much easier and more cost-
effective to iterate designs, verify and validate designs, and test designs. It enables engineers to wait until the model 
is complete and finalized before building costly, long lead-time prototypes and using limited, expensive lab time. 
Engineers can use hardware and lab testing only to verify that the simulation results match the real system, rather 
than using it as a design step. Simulations also allow engineers to model events or conditions that may be difficult to 
recreate in a lab environment, such as extreme temperatures or crash testing.  

 
There are many techniques that engineers use to simulate their designs over the large parameter spaces required 

by design exploration studies, robustness testing, or BER. Design of Experiments (DOE) and Monte Carlo analysis 
are two techniques that require evaluating multiple scenarios. In fact, a major benefit of using Design of 
Experiments techniques is to limit the number of scenarios that need evaluation. This is because building, or even 
modeling, all possible scenarios is impractical—it takes too long. To reduce evaluation or testing time even further 
requires more innovation. The ability to run simulations in a HPC environment is one approach that was once 
prohibitively expensive to implement due to the cost of installing and maintaining sufficient computing power. With 
the expansion of multicore and multiprocessor computers, and the growth of computing clusters, vast CPU 
processing power is already installed in many organizations’ sites.  Taking advantage of that computing power using 
the same tools installed on an engineer’s desktop is not always so straightforward. In fact, the difficulty in setting up 
distributed applications is still a barrier to tapping the processing power in one computer, let alone a cluster of 
perhaps hundreds. Yet, taking advantage of this resource is a critical step to speeding up simulations, as well as 
increasing the number of simulations that can be reasonably run.  
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Figure 3. Plot showing the time taken for simulating the 
task using different Simulink simulation modes. 
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Some problems are called distributed or coarse-grained because they can be segmented easily to run on several 
nodes without communication, shared data, or synchronization points between the nodes. Monte Carlo simulations 
fall into this category, and thus are an obvious candidate to run on computing clusters. Getting an individual’s 
simulations to the cluster or onto multiple processors, particularly from within a block diagram software tool, is not 
always as obvious. One 
possibility is to compile the 
model into an executable and 
then script the parameter 
variations, communication 
with a scheduler, and job 
creation. This can be tedious 
and often requires help from 
a cluster administrator to 
customize a particular 
simulation setup. The 
MathWorks has responded to 
this need by providing 
distributed computing tools 
that make it possible to 
distribute complete Simulink 
models for execution in a 
cluster or in a multicore or 
multiprocessor computer without the need to write any lines of code. 

 
SystemTest15 and Distributed Computing Toolbox16 make it possible to set up a series of parameters in a 

Graphical User Interface (GUI) to vary in a Simulink model for Monte Carlo or DOE and then define it as a job to 
be run on multiple processors. Launching the job from SystemTest requires only a checkbox, as shown in Figure 4.  

 
MATLAB® Distributed Computing Engine17 schedules and executes the job on available workers, which are 

MATLAB processes running on a cluster. A system or cluster administrator can setup a configuration file and make 
it available to all who want to use the cluster. That file contains information about the particular scheduler in the 
cluster and the shared directories that may be needed. Each worker requires only the MATLAB engine license; 
separate toolbox and blockset licenses are not required. The distributed computing tools implement dynamic 
licensing, which enables the workers to run software that uses any eligible MATLAB toolboxes or Simulink 
blocksets for which users are licensed on the computer sending the job. 

IV.  Combining Code Generation with a Computing Cluster 
For maximum benefit, both code generation techniques and a computing cluster can be used. SystemTest and 

Distributed Computing Toolbox can run a 
Simulink model in any of the simulation modes. 
Thus, users can take advantage of the fastest 
speed for each single simulation run, as well as 
distributing the faster simulations across 
multiple machines.  

 
Figure 5 demonstrates the speed 

improvement achieved by distributing the tasks 
used in Section II C of this paper on a 
computing cluster of up to eight machines.  
Table 1 lists the performance improvement as a 
factor of the base rate of one machine running 
the task. For example, executing the simulation 
in the Normal mode on two workers produced a 
2.0x speed improvement over a Normal mode 
simulation on one machine. Similarly, 

 
Figure 4. The SystemTest desktop showing an example of using multiple 
processors by selecting a checkbox in the GUI. 

 
 Figure 5. Plot of speed-up achieved using different simulation 
modes over multiple processors. 
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executing a Rapid Acceleration mode simulation of the task on eight workers produced a 26x speed improvement 
over a Normal mode simulation on a single machine. 

 
As can be seen in Figure 5 and Table 1, the speed improvement is not linearly dependent on the number of 

workers. This is because distributing the tasks adds its own overhead, namely, copying over the files from the 
development machine to each 
machine on the cluster, 
transmitting the input and 
output data between the 
workers and the job manager 
– in this case the MathWorks 
job manager provided with 
the MATLAB Distributed 
Computing Engine, and the 
network latency. In general, total simulation time should be significantly longer than this overhead to achieve speed 
benefits from distributing tasks. 

 
In the example, the Rapid Accelerator mode shows decreasing rates of improvement as the tasks are distributed 

among four and eight workers. The effect is less pronounced in the case of the Normal mode simulations. This is 
different from the results in Figure 3, where the example has eliminated the overhead from the model build process 
for the Accelerator and Rapid Accelerator modes. This 
is because the Accelerator and Rapid Accelerator 
modes do not need to rebuild the code on the single 
processor; once the model has been built, unless there 
is a change in the model structure, it can just rerun the 
same executable for each simulation task. When the 
simulation is distributed, each worker must build the 
code once. The results obtained here are specific to the 
model and the example cases used.  

 
The dedicated cluster of machines used for this 

example consists of four identical Dell OptiPlex 
SX280s18 with dual core processors running at 2.8GHz 
and with 1GB of shared memory on each machine. 
These machines are connected to each other via a 
dedicated router and subnetwork. The router is also 
connected via a larger network to a dual core, 
1.83GHz IBM T60 laptop with 1GB of memory that is 
used to prototype the code and run the scheduler. All 
the machines on the cluster were running the 32-bit 
Windows XP operating system. Figure 6 shows the 
topology of the computing cluster. Distributed 
Computing Toolbox and MATLAB Distributed Computing Engine support other platforms and heterogeneous 
computing clusters with different machines running different operating systems. Different network topology or 
machine architecture could make a difference to the results obtained, in addition to the other factors discussed in the 
paper. 

 
RSim was not investigated in this section as it involves the manual generation of target executables that are 

specific to platform architecture and operating system. RSim is expected to produce similar results to the Rapid 
Accelerator mode as more workers are added to the cluster. 

V. Conclusion 
There are many reasons engineers need to run simulations faster.  This paper has presented several methods that 

can be used to reduce the time taken to run simulations. The choice of techniques depends heavily on the user’s 
specific task and should take into consideration such things as debug needs, network communication overhead, total 

 Number of cores 
Simulation mode 

1 2 4 8 

Simulink Normal mode 1.0x 2.0x 2.7x 4.0x 
Simulink Accelerator mode 1.5x 3.0x 4.4x 6.5x 
Simulink Rapid Accelerator mode 7.4x 14x 21x 26x 
Table 1: Performance gains to be had from different simulation modes and 
distributing the simulation on a cluster.  

 
 Figure 6. Network topology and schematic of the 
cluster used to perform tests in the distributed 
simulation. 
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simulation time, compile time (for code generation techniques), access to processing power and maturity of the 
model.   

 
The Simulink example shown in the paper proves that tools from The MathWorks can be successful in achieving 

more than 20x improvement in total time spent running a simulation using only eight processors and a relatively 
short number of simulation tasks.  It is possible to see how beneficial these techniques could be when a single 
simulation takes hours to run.  This paper has addressed several methods by which faster speeds can be achieved 
running Simulink models.  As HPC clusters and multicore computers become more prevalent, these improvements 
will be achievable by all engineers. 
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