Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit
20 - 23 August 2007, Hilton Head, South Carolina

The Use of Computing Clustersand Automatic Code
Generation to Speed Up Simulation Tasks

Jason R. GhidelfaAmory Wakefield, Silvina Grad-Freilich Jon Friedmahand Vinod Cheriah
The MathWorks, Inc. Natick, MA, 01760

This paper studies a number of different techniques that can be used to reduce the
amount of time needed to run block diagram simulations. The first is automatic code
generation techniques used to create simulation executables from graphical block diagram
models. A number of alter native techniques ar e studied, highlighting increases in simulation
speed that can be achieved at the expense of interactivity with the graphical model. This
paper will discuss at which stages of modeling and simulation code generation should be
considered. The second technique that is studied is the use of computing clusters to
distribute a number of simulation runs across a number of processors. With the advent of
the multicore processor this technique has become accessible to many more engineers than
in the past.

|. Introduction

HE use of modeling and simulation has become wiga&bin the development of embedded systems, driven

primarily by the popularity of Model-Based Destgri Migrating to a workflow using Model-Based Desigms
many benefits, including improving the resultingsid@, shortening development time and costs, addcieg
design errors. Model-Based Design provides insigih system behavior without the need to use playsic
prototypes of the system, which in turn enablesireregs to gain this understanding early in the greent
process. There are many examples that illustratedhue of using models for the early detectioprobrs or gaps in
the requirements and design, for better understgndf the system behavior, and for evaluating diff¢ design
scenarios.

A drawback in modeling and simulation is that timast be invested to build the model, and the tietpired
can be significant when that model is written ipragramming language such as C. This has driverusieeof
commercial off-the-shelf (COTS) software in the elepment and simulation of models for embeddedesyst
especially when the software can provide specidjizomain-specific functionality, because it camrén the
modeling and design process by making it easidet@lop high fidelity models of embedded systtiis

As COTS software has made it easier to implementléd#Based Design for embedded systems, the use and
reuse of those models throughout an organizatiomtirages to increase. Organizations are also findiegy
applications and ways to take advantage of thdléateal property that is contained within thesedels. Many of
these applications require simulating the modetipiel times for various purposes.

For example, design exploration studies, Monte dCahalysis, robustness testing, parameter sweeps,
requirements analysis, bit error rate (BER) cakiotes, and other verification and validation adtesg all rely on
multiple simulation iterations. Running the modeany times on different test cases provides insighthe
engineer for refining and improving their desiga veell as verifying the design is meeting the systequirements.
Each of these runs may take hours to complete. mkipg upon the complexity of the model, simulattone can
become a critical bottleneck in the developmentess. One way to speed up verification tasks automate test

! Manager, Technical Marketing, 3 Apple Hill Drivatick, MA, 01760, AIAA member.

2 Technical Marketing Manager, 3 Apple Hill Driveatick, MA, 01760.

% Manager, Parallel Computing Marketing, 3 Applel Bitive, Natick, MA, 01760.

* Manager, Aerospace, Defense and Automotive Marge8 Apple Hill Drive, Natick, MA, 01760.
® Technical Marketing Specialist, 3 Apple Hill Drividatick, MA, 01760.

1
Copyright © 2007 by The MathWorks.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit
20 - 23 August 2007, Hilton Head, South Carolina

cases. Storing these test cases independentleahtidel allows them to be easily reused as the hisdefined
over time. Alone, this does not fully resolve tived bottleneck, but in combination with other teiclues, it can
greatly reduce the time spent on multiple simufaio

Other activities such as algorithm prototyping, gassor-in-the-loop (PIL), or hardware-in-the-loaglL()
simulations rely on techniques to automaticallyegate code from the model. This code can then tgeted to
microprocessors, DSPs or FPGAs that interact withopype hardware in real tirh® Expanding the use of code
generation for simulation acceleration can als@ tadleviate the simulation speed bottleneck disedissbove;
however, it alone cannot completely addres<
the need for faster simulations.

This has driven a call for the ability tc
run simulations in a high-performanc
computing (HPC) environment. In the pas
HPC was available mainly to governmet
agencies and large research laboratori
because only these groups had the mean:
purchase supercomputers. Today, mc
supercomputers have been replaced
COTS computer clusters that provid
affordable, high-performance, distribute
environments. In addition, the number ¢
available clusters is growing rapidly. HPC i Speed
now at all-time high of $10 billion in
hardware revenue in 2006 and a growth Figure 1. Simulation speed relationship to model interactivity. In
more than 20% over last 4 years general, simulation speed increases as model interactivity

decr eases.

With the increased availability of
multicore and multiprocessor computers, and thevtiroof computing clusters, access to vast CPU msing
power is now within the reach of many engineers. &mbining computing clusters with code generation
technology, models can be easily built with COT®veare, and simulation tasks can be completed sraér
magnitude faster.

Interactivity

In this paper, we will discuss multiple techniquesreduce the time needed to complete Model-Basesign
tasks with the COTS software tools, MATLAB®and Simulink®" from The MathWorks. This will include the use
of HPC clusters, code generation technology, ast reuse. Examples and benchmarks will be discutsad
demonstrate the typical increase in performancecdrabe achieved.

1. Using Code Generation for Simulation Acceleration

There are many reasons a model may take a longttiregnulate, some of which are described in tlevipus
section. The rest of this paper will use exampkeseld on Simulink models, and some specific teclasigund tools
developed to speed up the simulation time of Sinkuthodels. The Simulink User’'s Guidaliscusses some of the
common reasons why a simulation can take a long torrun, from having a model that contains antatgje loop,
to setting the maximum step size too small, or §irhpving too many scopes in the model.

When these common reasons for simulation slow dioawre been investigated and corrected and the nstillel
simulates slower than desired, the use of autoaibtigenerated C code to speed up the simulati@uldhbe
considered. However, converting the graphical maael an executable loses many of the benefits @deting the
system in a COTS block diagram software tool. \Aitls in mind, an engineer may wonder if modelingugt be
done in a programming language like C from thetst&hen compared to a programming or scriptingyleage, a
block diagram tool can save large amounts of timaléscribing and defining a system. Additionallyge if
describing the system is easy to do in C, solviveg system through time, and debugging the C codeldt more
difficult than debugging a graphical model.

Because it is easier to build and debug models gragphical block diagram, using C code to accederat
simulation is more effective later in the developtngrocess. A good point to consider using C igmvangineers
start using, rather than building, the model. Tisatwhen they start simulating the model many timéthout

Copyright © 2007 by The MathWorks.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit
20 - 23 August 2007, Hilton Head, South Carolina

changing its structure. Some tasks that requiitttlude: investigating the full design space usihess testing to
ensure the design can deal with uncertainties,vanification and validation tasks to ensure the lengentation
does what is required and is the right designh@se times, the structure of the model is wellreefj and the only
changes that will be made to the model are typidaput signals and model parameters.

The reason C code should only be considered omcbkehavior of the system has been defined andatetids
illustrated in Figure 1. In general, as the simalaspeed increases, the user will have less iléyiin running and
interacting with the simulation. For example, deding tools will not be available or some modelirgnantics may
not be compatible. Finally, it takes time to getethe C code from the model. So, when engineersamstructing
a model or changing the model structure as the hisdealidated, the code will have to be rebuilt moly each
time a simulation occurs but also if they simplydafe the diagram to ensure all the signal datastgpe consistent
in the model. This can consume more time than dvégs gained from running the simulation at coegiC code
speeds.

This means that as an engineer builds a modelg ubkim default simulation mode (Normal) will be thmst
efficient. When the engineer then wants to use mhadel, switching the simulation mode to one basedode
generation can then be a better approach if thelatian is not running fast enough. At this stage model is well
defined and the focus is now on having the simotetirun as fast as they can.

The value of working with Simulink is that engingaran realize all the benefits of a COTS graphidatk
diagram tool to build system models quickly andntiuse a simulation mode that automatically createsmpiled
executable of that model so that they can achiemgpded C code simulation speeds as well withoutrito leave
the graphical environment.

A. Simulink Simulation Acceleration M odes

Simulink offers four simulation modes (Normal, Atemator, Rapid Accelerator, and External), to hielpld,
execute, and debug models. Two of these simulatmaes, Accelerator, and Rapid Accelerator, use code
generation technology to generate a compiled eabtibf the model. The underlying C code for theleigs not
accessible by the user for either of the execusaipmerated by the Accelerator or Rapid Accelenatmies.

While running accelerated simulations, the usestils able to interact with the Simulink model, $uas view
signals on scopes, but this interaction does deeres the user moves from the default, Normal matale,
Accelerator mode, to Rapid Accelerator mode. Fangxe, if the Simulink model contains an algebiaiop
(where the input of a block with direct feedthroughdriven by the output of the same block), neitheceleration
mode will work. If the model contains blocks thanaot generate C code, for example a TransportyDaia
MATLAB Fcn block, the Accelerator mode will integtr those blocks at reduced speed, whereas the Rapid
Accelerator mode will not work. The Accelerator reoid compatible with the Simulink Profiler and Dgher,
whereas the Rapid Accelerator mode is not.

Users do not need to set up the code generatiamegsdo use these simulation modes. They are sHiéldm
this because all they need to do is to select théenitself. Once the simulation is started, a céedpéxecutable is
then generated, if needed, before the simulatiartsstunning. The only option the user selectshes compiler
optimization level: turned off for faster build t&®s or turned on for faster simulation speeds aetipense of longer
build times.

The final simulation mode, External mode, formsoamunications link between a model running in Sinul
and code from that model running on a target systerixternal mode, the Simulink model is the uségrface to
the external code, enabling users to download nuadiibns to block parameters to the external ceahe, view
signals from the external code in real time.

The Accelerator mode is the more general purposth@ftwo simulation acceleration modes. It creates
compiled executable for the parts of the model taat be compiled into C code and uses the intexpreiode for
the other blocks. It provides a high level of iafivity so that the user can use this mode eveimgluhe model
construction and debugging phases if needed. Thapited executable is solved through time using Jimku
solvers. This compiled executable runs in the sproeess as MATLAB and Simulink. Block parametergstia
model can be changed while the simulation is rupnand scopes and animation display as the sirualatins.

3
Copyright © 2007 by The MathWorks.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit
20 - 23 August 2007, Hilton Head, South Carolina

Extensive analysis is performed to avoid unnecgsshuilding of code for simple changes to the madeh as
changing the simulation stop time or the solveetyp

The Rapid Accelerator mode is more restrictive anltl only work with models containing blocks thaarc
compile into C code. The Rapid Accelerator modater® a standalone executable from a model thatirathades
the specific solver methods for that model. Sintuldoes not solve the model through time, as it doethe
Accelerator mode. The standalone executable crdateithe Rapid Accelerator mode runs as a procasarse
from MATLAB and Simulink, so, if a second proceggioore is available, it will take advantage of tlcate.
Significant speed increases in simulation time loarachieved with this mode. Block parameterstmchanged
without rebuilding only if they have been definesltanable parameters. Changes to the solver tystoprtime,
however, will necessitate a rebuild of the codegémeral, the Rapid Accelerator mode will requebuilds more
frequently than the Accelerator mode.

B. Simulation Target

If engineers need access to the underlying codestgenerated from the model, or they want toridhiste that
code on different targets, they can do so usingl-Rie@e Workshop®® from The MathWorks. Real-Time
Workshop generates ANSI/ISO C/C++ code from Sinkulmodels. Using target template files engineers can
specify on which environment the code will run. Qaret template that is specific to simulationederation is the
Rapid Simulation target (RSim).

RSim is a separate executable from Simulink thaexscuted from a DOS command line (on Windows
platforms), thus requiring scripts to get data iatal out of the executable. RSim is compatible &itkernal mode,
so engineers are still able to interact with thecexable through the Simulink model. This, howevsrnot as
convenient as the Rapid Accelerator mode that hsraated the interaction between the simulatiorcetedle and
the model.

RSim has a slight speed advantage over the Rapidl&@tor mode in running simulations, becauseestizeno
check to see if the model is up to date. RSim stsirhulating immediately, whereas the Rapid Acedtermode
first checks to see if the model has changed béfieraimulation begins.

C. Benchmarking results

Simulation acceleration can be difficult to quantifjiven that the factors that can slow down aipaldr
simulation could stem from a wide range of issi&mne of these are described in the previous sect®ecause
there are so many factors that need to be takeragttount that can affect overall simulation spédd,not possible
to define a benchmark that will be representativevery situation.

In this paper, we do not
attlempt 10 Present ar e — el
exhaustive set of example: D S H&| s =R E5 ¢ 9 2|y =0 [Fudbckao]| o DS 0 RRE S
to show how these factors
can affect overall n ot et s o
simulation speed using , ’_,
different techniques. ndalrss] .
Instead, one example ¢ o i i pr vt postns
presented using a model 0| [s e W
a fault detection, isolation, | | e i —— r _
and recovery (FDIR)
subsystem for a redundan
elevator control system tha ses o | | == %
has been described in detaFigure 2. View of the top level model used to benchmark the performance of
in previous work*** simulation modes.
Figure 2 shows a view of
the FDIR subsystem model, which provides a meassuty, in simulation, the effects of one or muéifailures in
the actuation system of the elevators in an airciidfie model contains 897 Simulink blocks and a garable
amount of Stateflow® logic and is representativa abmponent of a larger complex vehicle systemehod

Copyright © 2007 by The MathWorks.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit
20 - 23 August 2007, Hilton Head, South Carolina

Figure 3 shows the clock time taken to run 7~

different fault scenarios, each of which a Plot of time taken for simulation versus simulation mode
simulating 1000 seconds of the dynamics of t 1400 ‘ ‘ T Tywpmm—
FDIR subsystem model. The height of the blue bi
represents the time needed to complete -
simulation tasks using different simulation mod:
and RSim. The height of the red bars represents
additional overhead required to execute
simulation. This overhead is composed of such ta
as update diagram, code generation, cc
compilation and resource allocation befol
executing the simulation.

As expected, Normal mode is the slowe:
requiring 1232 seconds to simulate 1000 second:
simulation time for the 16 different fault scenatio
This is because Normal mode does not compile ¢
blocks. The Accelerator mode is faster, taking 8
seconds for the same simulation tasks. The speec
is provided by using precompiled code. The n
stack representing overhead time in Figure
includes the one-time cost of generating tl
compiled code and post-processing of the compi
code. At 166 seconds of execution time, the Ra|

Time taken for 16 simulations of 1000 seconds
of simulation time for the model

Normal Accelerator Rapid Accelerator RSim

Accelerator mode provides further increase in spe Simulink simulation mode

Note, however, that the overhead is now high

because the compiled code has to pass striFigure 3. Plot showing the time taken for simulating the
checks between simulation runs to ensure motask using different Simulink simulation modes.

fidelity. RSim is the fastest, taking just 75 seds

to complete the simulation tasks.

[11. Using a Computing Cluster to Speed Up Simulations

Code generation techniques can help decreasamba¢iquire for one simulation. Today’s complex syst and
safety-critical applications require evaluatingtesting multiple scenarios of a design. This is og@son many
organizations have turned to Model-Based Designdéi®Based Design makes it much easier and more cost
effective to iterate designs, verify and validagsigns, and test designs. It enables engineeraitamtil the model
is complete and finalized before building costlyng lead-time prototypes and using limited, expensab time.
Engineers can use hardware and lab testing onleridy that the simulation results match the realtem, rather
than using it as a design step. Simulations alsevangineers to model events or conditions that bedifficult to
recreate in a lab environment, such as extremedsahpes or crash testing.

There are many techniques that engineers use tdagartheir designs over the large parameter spacgsred
by design exploration studies, robustness testinER. Design of Experiments (DOE) and Monte Camalysis
are two techniques that require evaluating multiptenarios. In fact, a major benefit of using Desigf
Experiments techniques is to limit the number afnsrios that need evaluation. This is because ihgilér even
modeling, all possible scenarios is impracticaltaktes too long. To reduce evaluation or testingtexen further
requires more innovation. The ability to run sintigas in a HPC environment is one approach that eras
prohibitively expensive to implement due to thetafanstalling and maintaining sufficient compwgipower. With
the expansion of multicore and multiprocessor caens, and the growth of computing clusters, vastUCP
processing power is already installed in many omgions’ sites. Taking advantage of that compmupower using
the same tools installed on an engineer’s desktopt always so straightforward. In fact, the diffty in setting up
distributed applications is still a barrier to tappthe processing power in one computer, let alarguster of
perhaps hundreds. Yet, taking advantage of thisures is a critical step to speeding up simulati@swell as
increasing the number of simulations that can bsaeably run.

Copyright © 2007 by The MathWorks.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit
20 - 23 August 2007, Hilton Head, South Carolina

Some problems are called distributed or coarsexgdabecause they can be segmented easily to reavanal
nodes without communication, shared data, or symihation points between the nodes. Monte Carlaikitions
fall into this category, and thus are an obviousdédate to run on computing clusters. Getting atividual's
simulations to the cluster or onto multiple prooessparticularly from within a block diagram soétve tool, is not
always as obvious. One

e . . =lolx|
poss|b|l|ty is to Comp”e the Fie Edt Inset Run Took Deskiop Window Help
X @00 d|9 o 5 W | 2 | cumncorscrory: [piivinod cheraniDCT_BenchiFDIR &)
model into an executable an(. ue R | s oetion iy
then script the paramete St et s —— 4
. . B . = l"VE’tE:PE:dUhlm W Enable Distributed Testing TV:E VD\ADWLHQ ﬂ\e\sDév.arvEEgens\vFaBeldR{n
variations, COmMMUNICAtION | - a e o s e i
with a scheduler, and jok| #wmus Cy Tt
. . A] Limi check [ocal | 595& InvertedPendulum_results. mat
creation. This can be tediou: oo
and often requires help from| ‘e
a Cluster administrator to <Double-click to enter or browse to create File Dependendi... | Delete. T
H H Test vectors 2 x | Test Variables | Resources Property Value
CUStomlze a partICl'“a'r | Hew... | est.. | f”,/‘k‘ Ed ‘J 1 Start Time 13-Aug-2007 11:30:45
simulation setup. The | e T i et et e il
[pend [.15.21 .30, ¢ | O be edited Completed o
MathWorks has responded t(g=: zn= 5
= Distribution of main test rns across tasks 21
this need b roviding | E&rete & oo g 2 ortons El
y p g ‘ " Default {1 iterations per task, 32 tasks) Test Status: Failed
H 1 1 Time Elapsed: 00:01:37
distributed computing tools & rmsgort ke -
X < AR il
that make it possible to

distribute complete SimulinkFigure 4. The SystemTest desktop showing an example of using multiple
models for execution in aprocessors by selecting a checkbox in the GUI.

cluster or in a multicore or

multiprocessor computer without the need to writg nes of code.

SystemTesP and Distributed Computing ToolbBxmake it possible to set up a series of paraméters
Graphical User Interface (GUI) to vary in a Simiulimodel for Monte Carlo or DOE and then definestaajob to
be run on multiple processors. Launching the jonfSystemTest requires only a checkbox, as showigime 4.

MATLAB® Distributed Computing Engin€ schedules and executes the job on available warkenich are
MATLAB processes running on a cluster. A systencloster administrator can setup a configuratios dihd make
it available to all who want to use the clusteraffile contains information about the particulahaduler in the
cluster and the shared directories that may beatkedach worker requires only the MATLAB engineclise;
separate toolbox and blockset licenses are notirsgquThe distributed computing tools implement alyric
licensing, which enables the workers to run sofewtlrat uses any eligible MATLAB toolboxes or Sinmidi
blocksets for which users are licensed on the céen@mending the job.

IV. Combining Code Generation with a Computing Cluster

For maximum benefit, both code generation techricared a computing cluster can be used. SystemTdst a
Distributed Computing Toolbox can run a
Simulink model in any of the simulation mode: Plot of time taken for simulation task versus number of workers

1400 T T T T

Thus, users can take advantage of the fas I ik Normnal mod

. . . [simulink Accelerator
speed for each single simulation run, as well N ik Repia Accelerator |
distributing the faster simulations acros

multiple machines.

1200

1000
Figure 5 demonstrates the spes ror
improvement achieved by distributing the tasl
used in Section Il C of this paper on
computing cluster of up to eight machine
Table 1 lists the performance improvement as
factor of the base rate of one machine runni
the task. For example, executing the simulati

in the Normal mode on two workers produced 0 R o o -
2.0x speed improvement over a Normal mo HumbeohWorkers

simulation on one machine. Similarly Figure5. Plot of speed-up achieved using different simulation
modes over multiple processors.

6

600

400+

of simulation time for the model

2001

Time taken for 16 simulations of 1000 seconds

Copyright © 2007 by The MathWorks.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit
20 - 23 August 2007, Hilton Head, South Carolina

executing a Rapid Acceleration mode simulationhaf task on eight workers produced a 26x speed wepnent
over a Normal mode simulation on a single machine.

As can be seen in Figure 5 and Table 1, the spapdovement is not linearly dependent on the nundfer
workers. This is because distributing the taskssatkl own overhead, namely, copying over the filesn the
development machine to eac®

machine on the cluster, Number of cores

. - : ; 1 2 4 8
transmitting the input and| Simulation mode
output data between the| Simulink Normal mode 1.0x 2.0x 2.7X 4.0
workers and the job manage| Simulink Accelerator mode 1.5X 3.0X 4.4 6.5K
— in this case the MathWorks| Simulink Rapid Accelerator mode 7.4 14X 21 26X

job manager provided with Table 1. Performance gainsto be had from different simulation modes and
the MATLAB Distributed distributing the smulation on a cluster.

Computing Engine, and the

network latency. In general, total simulation tisteuld be significantly longer than this overheadd¢hieve speed
benefits from distributing tasks.

In the example, the Rapid Accelerator mode showse@sing rates of improvement as the tasks arehbdistd
among four and eight workers. The effect is lesmpunced in the case of the Normal mode simulati®hss is
different from the results in Figure 3, where tixamaple has eliminated the overhead from the modid Iprocess
for the Accelerator and Rapid Accelerator modess T"
is because the Accelerator and Rapid Accelere
modes do not need to rebuild the code on the sir
processor; once the model has been built, unless tl
is a change in the model structure, it can justrréhe
same executable for each simulation task. When
simulation is distributed, each worker must bulhe t
code once. The results obtained here are speaifteet
model and the example cases used.

. . Desk S
The dedicated cluster of machines used for t eskiop System

example consists of four identical Dell OptiPle [T T <——>
SX280s® with dual core processors running at 2.8Gt I:I e
and with 1GB of shared memory on each machil

These machines are connected to each other vi e |
dedicated router and subnetwork. The router is a

connected via a larger network to a dual co

1.83GHz IBM T60 laptop with 1GB of memory that i

used to prototype the code and run the scheduler. Figure 6. Network topology and schematic of the

the machines on the cluster were running the 32cluster used to perform tests in the distributed
Windows XP operating system. Figure 6 shows tsimulation.

topology of the computing cluster. Distributeu

Computing Toolbox and MATLAB Distributed Computirigngine support other platforms and heterogeneous
computing clusters with different machines runntfifferent operating systems. Different network timgy or
machine architecture could make a difference taélalts obtained, in addition to the other facttisgussed in the
paper.

RSim was not investigated in this section as iblmegs the manual generation of target executalblas dre
specific to platform architecture and operatingtesys RSim is expected to produce similar resultsh® Rapid
Accelerator mode as more workers are added toltiséec.

V. Conclusion

There are many reasons engineers need to run siomslidaster. This paper has presented severdladetthat
can be used to reduce the time taken to run simokatThe choice of techniques depends heavilyhenuser’'s
specific task and should take into consideratiarthghings as debug needs, network communicatiorhead, total

Copyright © 2007 by The MathWorks.

Presented at:
AIAA Modeling and Simulation Technologies Conference and Exhibit
20 - 23 August 2007, Hilton Head, South Carolina

simulation time, compile time (for code generatiechniques), access to processing power and matfrithe
model.

The Simulink example shown in the paper provesttials from The MathWorks can be successful inedhg
more than 20x improvement in total time spent ragra simulation using only eight processors andlatively
short number of simulation tasks. It is possildesée how beneficial these techniques could be vehsimgle
simulation takes hours to run. This paper hasesddd several methods by which faster speeds canhieved

running Simulink models. As HPC clusters and roolte computers become more prevalent, these imprewes
will be achievable by all engineers.

References

! Barnard, P., “Graphical Techniques for Aircraft maynic Model Development, ’AIAA Modeling and Simulation
Technologies Conference and Exhibit, Providence, Rhode Island, Aug. 2004, CD-ROM.

2 Aberg, R., and Gage, S., “Strategy for Succedsfuerprise-Wide Modeling and Simulation with COT&ft@are,” AIAA
Modeling and Simulation Technologies Conference and Exhibit, Providence, Rhode Island, Aug. 2004, CD-ROM, 2D04-
4929.

3 Krasner, J., “Model-Based Design and Beyond: $mist for Today's Embedded Systems Requirements,befitied
Market Forecasters, American Technology Internatioframingham, MA, January 2004.

4 Wood, G. D., and Kennedy, D. C., “Simulating Megital Systems in Simulink® and SimMechanics”, TeachhReport
91124v00, The MathWorks, Inc., Natick, MA, 2003.

5 Denery, T., Ghidella, J. R., Mosterman, P. J., 8hénoy, R., “Creating Flight Simulator Landing G&#odels Using
Multidomain Modeling Tools” AIAA Modeling and Simulation Technologies Conference and Exhibit, Keystone, Colorado, Aug.
2006, CD-ROM, ID: 2006-6821.

5 Popinchalk, S., Glass, J., Shenoy, R., and AdRrdWorking in Teams: Modeling and Control Desigfithin a Single
Software Environment”AIAA Modeling and Smulation Technologies Conference and Exhibit, Hilton Head, South Carolina,
Aug. 2007, CD-ROM.

7 Hodge, G., Ye, J., and Stuart, W., “Multi-Targetodiélling for Embedded Software Development for Aunbdive
Applications,”2004 SAE World Congress, 2004-01-0269, SAE International, Detroit, MI, Mar 2004.

8 Erkkinen, T., “Multiple Purpose Automatic Code @eation”, AIAA Modeling and Simulation Technologies Conference
and Exhibit, Hilton Head, South Carolina, Aug. 2007, CD-ROM.

% IDC HPC Briefing at the 2007 International Supenpaiting Conference

0 «Getting Started with MATLAB®”, The MathWorks, Niak, MA, September 2007.

1 «Using Simulink®”, The MathWorks, Natick, MA, Semnber 2007.

12 «Real-Time Workshop® User’s Guide”, The MathWorkétick, MA, September 2007.

13 Mosterman, P. J., and Ghidella, J., “Model Reusetfe Training of Fault Scenarios in Aerospaderdceedings of the
AlAA Modeling and Simulation Technologies Conference, Providence, RI, Aug. 2004, CD-ROM, ID: 2004-4931.

4 Ghidella, J., and Mosterman, P., J., “Requirem@atsed Testing in Aircraft Control Design”, Ptoceedings of the AIAA
Modeling and Simulation Technologies Conference, San Francisco, CA, Aug. 2005, CD-ROM, ID: 200868

15«gystemTest User’'s Guide”, The MathWorks, Natield, September 2007.

18 «Distributed Computing Toolbox User's Guide”, TNathWorks, Natick, MA, September 2007.

17 “MATLAB® Distributed Computing Engine System Adnistrator's Guide”, The MathWorks, Natick, MA, Semitser
2007.

18 hitp://www.dell.com/html/us/products/optiplex/sx2Btml

Copyright © 2007 by The MathWorks.

