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ABSTRACT

This paper explores implementation of an audio ritlgm on a fixed-point embedded processor using &t@xhsed
Design. Once the algorithm, a 3-band parametricakzpr in this example, is designed and simulatethgi a
combination of scripting and graphical modelingl$p@mbeddable C-code is automatically generatenh fthis
model. This paper illustrates how algorithmic C-eaknerated from such a model in Simulink can begnated
into the parent stand-alone embedded project @&wary and implemented on an Analog Devices Blas®fi537
processor. It also elaborates how processor-spécifiallable assembly code can then be integratedtie model
for both simulation and code generation to impriss@xecution performance on this processor.

algorithm, convert to and test it in fixed-pointanually
hand-coding these algorithms into C and assembly fo
implementation on to embedded processors and,
subsequently, verifying their executions with anigji

Implementing fixed-pqint audio _algorithms on esigns takes up a significant portion of the
embedded processors is a challenging task thatd Coaevelopment cycle. In this paper, we explore théeco
involve many teams and many different steps. Apa

. ; nE_;‘eneration concepts to implement an audio algorithm
from the time it takes to completely develop a

1. INTRODUCTION
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and integrate it into a real-time application on amffective magnitude response of the overall system
embedded processor. desired by the audio engineer. One common appitati
of these filters is in compensating for the acasstf
Engineers can describe algorithms using textual ¢he cabin environment of a car during the calibrati
graphical techniques to model mathematical equstionphase while the audio system is installed by tleistic
signal flow, and state machines. Model-Based Desiggngineer.
helps bring together these different modeling pigrad
for efficient system development while providing aAn effective prototyping platform should be flexabl
framework to specify and explore functional behavio enough to graphically specify signal flow and state
implement these specifications through C-cod#gic, as well as enable the designer to textusdigcify
generation, and continuously test and verify theigte the algorithm. We have used a combination of thipsc
against requirements [1][2]. based technical computing language, MATLAB® and
the graphical modeling environment Simulink® to
We first explore how a design could be passed on tevelop this model of the 3-band parametric eqealiz
software engineer for implementation on an Analod graphical user interface to tune the parametéthe
Devices Blackfin processor. We are assuming that thequalizer was also created using MATLAB that hétps
designer has already created a fixed-point moded oftuning this 3-bands in real-time by writing newtdi
Parametric Audio Equalizer [8] that has been teatatl coefficients to the MATLAB workspace and uploading
verified for correct behavior through real-timethem to the executing Simulink model. A screensiiot
simulation on a PC. We explain how to configure théhis model and the GUI is shown in Figure 1.
model such that the code generated from the algoiat
subsystem can easily be integrated into a pare___
embedded project. e e

Parametric Audio Equalizer User Interface
Gk 908 g o o Carod o ks o o Color o]

Parametric Audio Equalizer g D
Magnitude Response Test Bench

Next we explore integrating C-callable librariesttwi \/
Model-Based Design. We create a custom block th :
wraps an optimized Blackfin C-callable assembly
function to replace the original filter blocks itnet
model. We verify the performance of the optimizec| ™
implementation with the original design through
processor-in-the-loop (PIL) testing, which enabtes ==
simulation  between  Simulink and an IDE
(VisualDSP++).

Figure 1: Simulink model of a 3-Band Parametric

Finally, we compare how different model configurat Audio Equalizer
and design choices affect performance by profiling
execution times for the generated code. Profiling t This fixed-point model was created from the flogtin
model for execution statistic such as memory faotpr point version of the “Parametric Audio Equalizer”
and processor utilization helps with not only idigimg ~ Simulink model [8] tested thoroughly on a PC inltea
candidate subsystems in the design for sudiine. We assume the desired behavior has been
replacements with optimized libraries but also irachieved in simulation after the necessary model
quantifying the benefits of such replacement. elaborations and iterative testing as describdd]jrand

use this fixed-point model as a starting point foe

implementation steps described in this paper.
2. AUDIO ALGORITHM MODEL

The audio algorithm we used for our example in this
paper is a 3-band parametric equalizer. Each bsuad i
biquad filter which can be tuned by specifying thre
parameters — center frequency, bandwidth and the
amplitude. Such filters allow a precise control tbé
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3. GENERATING CODE FOR A real-time while verifying its performance using lrea
VISUALDSP++ PROJECT world audio signals.

Automatic code generation enables designers tkiyuic The purpose of this project is to verify that we geass
deploy their ideas to hardware to continue veriyin audio through the part. Also, this project confegithe
performance on a real-time embedded system. Wh&DC/DAC such that its gathers frames of data in a
using automatic code generation tools during thdouble buffered model, with the frame (buffer) size
development process, designers typically generade ¢ specified as a parameter that can be configurethéy
from an algorithm model then integrate this cod® in user before compilation. The audio data from thebdi®
the parent project. For example, Real-Time Workshopuffers were originally written to two separateightes
Embedded Coder can be used to generate C-codeafrormorresponding to Left and Right channels. We medifi
Simulink model. Specifications can be added to ththis project such that both the left and right afeln
model to customize the generated code to easeotlee cinput data are concatenated and indexed off a esingl
review and integration process. The generated fidgs variable each for input frame_ir) and output
then be hand integrated into an existing projedt [6(frame_out) We did this as the algorithm we are
Embedded IDE Link extends these capabilities anitegrating is developed as a frame based model in
provides additional optimization, verification, eéxgion  Simulink, which can handle multi-channel data -eur
profiling capabilities, and code integration feawirin case, the stereo signal is dealt as a single 2yBakin
this section, we’ll take advantage of the Embedd¥e the model, which would correspond to a single \meia
Link feature to automate creation of a VisualDSP+in the generated code, with Left channel data Vedid
library to ease integration of the generated cade & by right channel.
pre-existing parent VisualDSP++ project.

We also had to match the frame size defined in the
In the following sections we will demonstrate hoav t project to that of the model. An excerpt from ttazgmt
configure a model to generate C-code and how faroject is shown in Figure 2.
integrate the generated code into the parent pgrojée

applied the following steps to accomplish this task for (k-0; kUM SANPLES: kt)
< convert 24-bit integer input to 16-bit fractlé format for proce
framns_in[k] = {(fractld)(iChannsl0LeftIn[i+k] »> 8):
1. Prepare the parent VISU3|DSP++ prOJeCt frame_in[NUM_SAMPLES+k] = {fractlt)({iChannel0RightIn[i+k] »» 8);

<+ do frame-based processing here
#<dzpparameg_fixPt_BFE37_step():

2. Specify the data interface in the model
for (k=0; k¢2*NOH_SAMFLES; k++)
t < /Fesdthrough

3. Generate a Blackfin library from the model ang frane cut[k] = frame_in[k]:

prOfIIe execution icr (k=0; k<NUM_SAMPLES: k++)l

< convert 16-bit fractlé back to 24-bit and =send it to output
iChannellleftCut[i+k] = {un=zigned int)frame outl[k]

4. |Integrate the generated Iibrary into the parer . iChannel 0RightOut[i+k] = (un=igned int)frame_nut[k+§11§ﬁféAMPLE5] <<
project

Figure 2 Excerpt from audio pass-through Analog
3.1. Prepare the Parent Visual DSP++ Project Devices VisualDSP++ project

We began with an audio “pass-through” VisualDSP+8.2. Specify the Data Interface in the Model

project for an Analog Devices Blackfin processohnisT

stand-alone project implements the ADC and DAGn order for the generated code to tie into thedfee
device driver code for a Blackfin BF537 EZ-Kit bdar through VisualDSP++ project, the input and output
Building and executing this project on the BF537- EZsignals of the algorithm model need to be configure

Kit board implements a direct feed through of theut have the same names as the variables in the parent
audio through the processor and to the outpuproject, namelyframe_in and frame_out as seen in
Integrating an algorithm code, automatically getesta Figure 3.

or manually hand coded, into this framework alldtes

engineer to quickly and easily deploy their aldgoritin
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- oEE enables other software components to access this da
Dieassm@jcs djaer ofm s H@sne For example, in a deployed application, the sofewar
Parametric Audio Equalizer on Blackfin engineer could schedule another software compdpent
Siar. ore eson o 5ET £2. o i coe o st proceser modify these variables at runtime before they asedu
by the main calling routine in the generated altoni
O P e code.
. We applied some of the MPT features to the coeffici
Pk variable specification in order to define and dezla
— coefficient variables in separate source and hefildsr

(biquad_coeffs.and biquad_coeffshas shown in the

in Figure 5. We also customized the parameter MPT
object and the model to insert comments in the
generated header files that corresponds to thegmlesi
parameters of that filter [8].

Show the properties for the selected signal. 112% Coniest-To Exiting Viewsr

Figure 3 Simulink algorithmmodel for integrating into
VisualDSP++ project showing steps for configurihg t

Signal Properties
. . . . Value: I[1.11764}-1.68922}0.58DUES}-LEBQZZ}U.EQ??DI]
To accomplish this task of tying in the generatede;
H . , . Data type: Iautn j =
we specify the ‘Storage class’ parameter of theutinp
and output signals dsnported Externusing the signal e 20 Complexity: real
properties dialog as seen in Figure 4. This setting Minimum: - |-Inf Maxmum: | 1nf
assumes that the parent project will declare thenong unts: |
for these variables and the generated code justsaes | Code generation option
them Storage class: IG\nha\ (Custom) j
—Custom attribut
=] signal Properties: out I Memory section: IDefau\t j
o ) L5 . ‘
ignal name: qut Show propagated signals |off = Header file: |h|quad7cnef’fs.h
I signal name must resolve to Simulink signal object Owmer: |
Logging and accessibility ~ Real-Time Workshop | Documentation I Definition file: [ hiquad_coefs.c
[ - i ; ; ;
B _Refresh | Figure 5 MPT Parameter object settings dialog
Storage class: IImpm’tedExtem j
Allas: | At this point, using the model we have elaboratesst
far, we have generated ANSI C-code that is portabte
could be hand integrated into a larger project [6].
o | g | wop |y | 3.3. Generate a Blackfin Library from the

. . Model
Figure 4 Selecting ‘Imported Extern’ storage class for

output signal line In this section we will automate creation of a

. A isualDSP++ library. This lib then be irohbal
Also notice that in Figure 4 we set the ‘PackageyIsua rary. s rary can [nen be |

Module Packadi Technol in the parent project and the calling function cbbk
parameter tompt Module Packaging Technology iqey referenced after declaring the functioadier in

(MPT) enables us to effect certain custom|zathmﬂ'_1e his project. This approach minimizes the manuepst
generated code. For example, we can customize t

. i Eeded to include the generated code [5]. We @b a
comments that are inserted in the generated co

h d fil d he stomize the code generation process to make fuse o
separate out the generated filter code as a deler fixed-point intrinsic functions for the Blackfin pcessor
and specify the location of variables in the targe[t12]

memory. Partitioning coefficients into separateedil

AES 126th Convention, Munich, Germany, 2009 May 7-10
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The Target Preferenceblock, from the Embedded IDE Finally, we configured the model to directly create
Link library, provides access to the processor Wward VisualDSP++ library by using the ‘Archived Library’
settings required to generate a VisualDSP++ projediuild option. An excerpt from generated code -
This block also provides the ability to define aumst highlighting the TFL replacement is shown in Fig8re
memory banks and placement of code and data ssction

into memory. We added a Target Preferences block to

1 Select: ~Software environment
our model and selected the appropriate processbr an e B e
. . . . Target function library: C89/C90 (ANST
session settings corresponding to the BF537 EZ-Kit Date Import/Export . cao/con (ans)
g | Optimization Uty function generation: o' rc s
board as shown in Figure 6. & Disgnostis cupport: ¥ fleating-pornts GHUSB (GII)
i-Sample Time TIC28x (I50)
‘--Data Validity I absolute time  TT C28x
2 mmEIR L-Type C L TICS5¢(ISO)
<) Target Preferences\BF537 EZ-KIT [l ;7 TYpe FOMVETSION - code interface T1C55x
- Cannectivity TIC62x (150
Board Info | Memary | Sections | # Compatibility ™ GRT compatible call intel 11 Cﬁzx( )
F———— !:::;Rﬂferﬂﬂcmg I™ Generate reusable code E g::;
Bloard type: W ~Hardware Implementa... | | SUPpress error status in TIC67x
§ Model Referencing Configure Model Funct ?:,:iluﬁ?:éwg (150)
e Add new | Edit Elete & Simulation Target e finoon TriCore
CPU clock | BF331 {~Symbols Verffication—— ADIBF53x (IS0)
BF5a2 ‘- Custom code
BF533 & Real-Time Workshap Support software-in-the-l,p7 spzRC (150)
—_— H ADISHARC
Report |
Cocle genera] Brs34 H =Po W s S ADI TigerSHARC
BFS36 - Comments
+~Symbals ™ MAT-file logging
Operating sy BF533 - - Custom Code
BFs3n Debug ~Data exchange
521382 oz Interface: [Mone
Eoard cust] 521383 i~ Code Style
521364 El
o Figure 7 Selecting the TFL for Blackfin 53x
521367
521368
521369 N
532 + 532
T5201 =l e
T5202 s
YisualDSP- T5202 o */
Session name:; IADSP—EIFS3? ADSP-BF 5xx Single Processor Slmulatord ';r.'_'_r.e int32 T bfS53x_add s32_s3Z_s32_sat (int32 T a, int32 T b)
Processor name. IADSP-BFSS? d return add frix3Z(a, b):
}
Figure 6 Target Preference block for configuring the Figure 8 Target Function Library (TFL) code
processor and hardware settings replacements for 16-bit saturation operations on

Blackfin
The Blackfin processor supports intrinsic functidos

saturated fixed-point arithmetic which provide stpe
performance to writing equivalent routines in ANSI
Real-Time Workshop Embedded Coder can

Before we integrate this library into our parenojpct,
bg’s desirable to verify that this library fits berms of its

. o . . tion performance. The execution profiling
configured to generate calls to optimized fixedrpoi executio )
math routines using a Target Function Library (TFL)(:j""pf'J‘b'l't'e:[5 (()jf tthe . Emtbhedded IDE L'nkl a”(t)V\II(S at
[11]. TFL provides the ability to control functicend esigner 1o aetermin€ he processor Cycles taxen 1o

operator replacements in the generated code. One eaﬁecute_rrt]hishlilbrar)(/j aI(_)ng with t?e ma’_‘im‘.m;[);ac"
more function replacement tables define the targe isage. 1Nis nelps | entify areas of optimizatio
specific implementations of math functions and"® f|naI_ |_ntegrat|on steps are undertaken. ngated
operators. The Embedded IDE Link provides functiortlhe profiling of the gengrated code anq \_/erlfleaittﬂne
replacement tables for Analog Devices processars. erformance Of_ this I|brary. was Wlthln._acceptable
our model, we specified a TFL table for Blackfinx5ss oun_ds. We go into the details of this profilingeess
shown in Figure 7. later in this paper.

AES 126th Convention, Munich, Germany, 2009 May 7-10
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3.4. Integrate the Generated Library into the 4, CREATING CUSTOM BLOCKS TO
Project INTEGRATE PROCESSOR-SPECIFIC
CODE

We manually added the library built from the praigo
steps to the project. Before building this projettis

necessary to include the header file generatedim
process that declares the calling function as exter

Once the generated code has been integrated iato th
tparent project and ran successfully on the target
processor, it's useful to gather the executionsies of
this algorithm such as memory footprint, and preoes
utilization. This will help the designer identifyesms of

The library has two important points of entry: a mprovement in the algorithm.

initialization function and a step function. The
initialization function should be called during the
startup function of the parent project. State \#€eg are
initialized in this routine. The step function igpically
called during the periodic execution of the alduorit
and hence, has to be integrated into that pateotode
serviced by a timer or interrupt service routine.

If a bottleneck is identified, the designer may mak
change at the algorithmic level in the model os@me
cases may want to integrate processor-specific C-
callable optimized routines. The designer could
manually replace parts of the generated code with t
custom code, but such an approach breaks the link
between the generated code and the original mdte.
makes it difficult to reuse the original models
throughout the development process. Maintaininigla |
between the model and implementation code is an
important aspect of Model-Based Design that enables
continuous verification of the design throughoue th
process. To maintain this link, designers can ereat
custom blocks which call out to these optimized
routines in the generated code.

The routine to be invoked from this library to edte
the parametric equalizer algorithm is the functaadl

dspparameq_fixPt_ BF537_step()his was used within
the calling function in the feed-through projectsaswn
in Figure 9. This function also needs to be dedane
one of the header files in the project [5].

for (k=0: k<NUM _SAHFLES: k++)
1

S convert Z24-bit integer input to le-bit f
frame in[k] = (fractle){iChannellleftInli+}

frame_in[NUM_SAMPLES+k] = (fractle)(iChanns  There are a variety of ways to create custom blacks
3 Simulink which supports both simulation and code
L do frsme_bassd processing here generation [10][13][1_1][14]. In the following seotis,
dspparaneg fixPt BF537_step(): we provide an overview of the workflow we applied t
create a custom filter block. This custom blockscHie
for (k=0; k<NUM_SAMPLES; k++) optimized Blackfin IR filter iirdfl_fr16 in the
{ v convert 16-bit fractlf back to Z4—hit an generated code. We will focus on this workflow at a
iChann=l0LeftOut[i+k] = (unsign=d intlframn=  hjgh level, and publish the results we obtainedhia
iChannel 0RightOut[1+k] = {un=igned int){iran . . .
i next section. We applied the following workflow to

create this block.
Figure 9 VisualDSP++ Project showing the function

call invoking the parametric equalizer sub-function 1. Create a block for code generation to call the
processor-specific code

To avoid having to manually open the parent project

and recompile each time we changed the model, we 2- SPecify a functionally equivalent block for
could create a MATLAB script to automate the simulation

compilation of the library as well as linking and i )
downloading it into the parent project when we gate 3. C_reate. a mechanism to switch between
code from the model. simulation and code generation blocks

4. Verify the simulation and code generation
behavior

AES 126th Convention, Munich, Germany, 2009 May 7-10
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4.1. Create Code Generation Block
%% Define function prototypes
The Blackfin IR function we have chosen to intdgra |«=: = t=gacy_cod=( initiaiizety;
P . . - . def.SFunctionllame = 'iirdfl frlé sfun';
is iirdf1_fr16. This function prototype foiirdfl_fr16 iS |.: tnicializeconditionsrenspee = [...
shown in Figure 10. 'void iirdfl init('...
'iirdfl state_frié workl,'... % state
'intlé b I L % coeffs[]
typedef struct 'fractlé workI [size(ul,1)],'... % d=lay []
{ 'int3z2 p2) 1 % stages
fractleé *o; * coefficients dEf'O_u?puthr_‘SpEC : [
fractlé *d; * gtart of delay lines veid 111.-:1f]:_f1.l|:‘
e * read ite pointer 'fractilé ulfl,'... % input[]
#ractlé Br f'a" Write polnter 'fractlé Fl[siz=(ul,1i],"'... % output[]
int k; * I*number of stages + 1 'int3z size(ul,1),"'... % length
b} _iirdfl frlé state; 'iirdfl_state_frlé workl[1]l)'l: % iir_state_frilé

fine iirdfl init(state, cosffs, delay, stages)

(state) .o = |cos=ffs);: |
(state) .d = (delav):
(state) .p = (delav):
i{state) .k = (2% (stages)+1)

2 linkage nams _ iirdfl frilé
wvold iirdfl frilé (const fractlé _input[],
fractlé _output[], int _length,

_iirdfl frlé state *_filter state);

Figure 10iirdfl_fr16 function prototype

Note that the coefficients are passed as an arfay

fractl6 data type within a structure. For the Blackfin

the fractl6 data type is defined as a 16-bit signe
integer and represents a fixed-point number with
fraction-length of 15 bits. We created a utilitynétion
to convert filter coefficients designed in MATLAB &n
array of integer values which can be passed
iirdf1_fr16.

We used the Legacy Code Tool (LCT) to automat

creation of a block which will specify code genarat

behavior. The LCT is a MATLAB script-based tool to
wrap custom C-code or C-callable code into Simulin

for both simulation and code generation [7]. Anaypt
of this M-code we used is shown in Figure 11.

Because theirdfl_fr16 routine is written in assembly
code for the Blackfin processor, this code can ot
compiled for the Simulink simulation environment. |

we had functionally equivalent ANSI C-code for the
iirdf1_fr16 routine, we could have configured the LCT

to compile the ANSI C-code for simulation and make
call out toiirdf1_fr16 in the generated code. Since w
did not have a functionally equivalent piece of ANIS

code available, we created a “dummy” function whicl?

just passed the input to the output. Hence, theltneg
Simulink block will pass the signal in simulatiobyt
call out to thdirdfl_fr16 routine in the generated code.

Figure 11 Excerpt from LCT script to specify code
generation behavior
4.2. Create Simulation Block
In this section we will describe how we specified
simulation behavior for the custom block. Idealifge
simulation behavior should be equivalent to the
behavior of the generated code compiled and exécute
on the target processor. If some deviation is aedx,
then it is important to identify, quantify, and ifgr
Where these deviations exist. This is especialle tr
hen creating a library block used by multiple
ngineers. Ensuring accurate simulation and target
Behavior enables engineers to detect many desigrser
in the simulation environment before implementihg t
design in hardware - one of the key benefits of Bed

tIgased.

As described in the previous section, if we had
ﬁmctionally equivalent ANSI C source code for the
iirdf1_fr16 routine, we could have directly applied the
CT to create a block to specify both the final
imulation and code generation behavior. In many
cases, a designer will only have the processordfipec
code available and does not have the resourcessired
to rewrite the code in ANSI C. It is often easier t
specify the algorithm behavior using a variety of
techniques within the Simulink environment incluglin
using existing blocks or writing Embedded MATLAB
code [15].

For our example, we used tBéquad Filter block from

She Signal Processing Blockset to specify simutatio

behavior. The Biquad block supports specificatidn o
ixed-point attributes. We specified the data types
represent the filter internals similar to that dfet
Blackfin 1IR library.

AES 126th Convention, Munich, Germany, 2009 May 7-10
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It is important to note that the configuration fire

Biguad block will provide behavioral results whiahe

numerically very close (in the order of 0 but not [ Biackfin custom Library
identical to theiirdfl_fr16 routine. This is because
although we can configure the Biquad block to be
fixed-point Direct Form 1 structure, the actual
implementation of theirdfl_fr16 is slightly different.
For example, theiirdfl fr16 routine expects the :

denominator coefficients to be the negative of th | o— R ™ ou—sD
denominator coefficients used by the Biquad filter. - =

Environment

I - Controller

Code Generation Behavior

3

We chose to use the Biquad filter block becauseas
quick to configure and create a block for which we rigyre 12 Example Simulink library block defining
deemed the simulation performance as adequatee If w Simulation and Code Generation behavior
required bit-true simulation performance, we could

exactly specify the fixed-point mathematics of the, 4 Verify the Simulation and Code

iirdf1_fr16 using low level Simulink blocks or by Generation Behavior

writing Embedded MATLAB code.

. One of the key benefits of Model-Based Design & th
4.3. Automate Block Selection ability to ensure accurate simulation and target

In the previous sections we described how to crsate Pehavior. This enables engineers to detect mangrmles
blocks. The first block acted a pass-through fogrors in the simulation environment well before
simulation and calls thdirdfl_fr16 routine in the implementing the design in hardware. In the folluyv
generated code. We will refer to this as the “Codgections, we’ll verify the behavior of thedfl_fr16
Generation Block”. The second block acts as filtefustom block on the Blackfin using the processer-in
whose simulation response is very close to thahef the-loop (PIL) testing.

iirdf1 fr16 routine. We will refer to this as the

“Simulation Block.” In this section we will desceb A typical verification task involves exporting test

how we automated selection between these blocks fégctors from the host simulation environment and
simulation and code generation. importing them into the target integrated developime

environment. PIL automates this task by enabling co

To accomplish switching between the “Simulatiorfimulation between the Simulink model and
Block” for simulation and the “Code Generation Btbc VisualDSP++ IDE. For each simulation step, the
during code generation, we leveraged the RTV@imulink model drives the execution of the
Environment Controller block. The RTW EnvironmentVisualDSP++ project to feed test data, execute the
Controller block is provided with the product R@ate ~ algorithm on the processor, and pull back the ssee
Workshop and enables designers to specify differeffesults for comparison. A conceptual view of PIL
behavior for simulation and code generation. testing can be seen in Figure 13.

Finally, we created a Simulink library block whichUsing this approach we were able to verify that the
contained the above elements. This library blocd arputput of this Parametric Audio Equalizer running o
it's implementation using the “Code Generation Bloc the processor gave expected results compared to the

“Simulation Block” and RTW Environment Controller output of the Simulink Biquad filter when fed ineth
block are shown in Figure 12. same input vectors from Simulink [9].

AES 126th Convention, Munich, Germany, 2009 May 7-10
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generated C-code is shown in Figure 14. This madel
configured to operate on 16-bit stereo audio inputs
containing 512 samples per channel sampled at 48 kH
hence the base rate is 10.67 msec. The primary
components of the algorithm are a Pre Scale, spdi
filters and a Post Scale. Filter coefficients amates
used 16-bit fixed-point data types.

Simulink

EmbeddedIDE Link™

~
(2]

We configured the model to generate code for aetrari
‘ ) of settings. We started with portable ANSI C-codel a
T S explored the effect of wrapping versus saturatie
then enabled TFL and configured it to generate iBiac
processor-specific intrinsic functions for fixedipio
saturated arithmetic. We explored the effect ahinb
and function call with this setting. Finally, weplaced
5. REAL-TIME EXECUTION PROFILING the Biquad filter block with the custom iirdfl_fr16
block (described previously) and profiled the résul
Execution profiling, stack profiling, and RAM/ROM The results of these tests are shown in Table 1.
analysis are common techniques to verify that the . )
generated code meets resource requirements on W€ first generated processor-independent portable
target. RAM/ROM usage can be obtained from th&NSI C-code and profiled it to show the baseline
memory map file generated during the build proceserformance for the filter function first using wrand
Embedded IDE Link enables automation for collectinghen using saturate. Designers prefer ANSI C-cdde |
and reporting execution time and maximum stack eisagPortability and platform independence is a key
Based on analysis of the resource usage statisties, "équirement. This way the code can be easily
designer can gauge whether the performance of thecompiled for deployment to different environments
model at different stages of the elaboration predes 1he execution time for the Parametric Audio Equaliz
acceptable or not. Typically during this elaborafithe 0N the Blackfin processor when configured to usapwr
designer will trade off behavioral performance uers Was around 60 psec. When the same model was
resource usage [1]. The designer could also step tgonfigured to use fixed-point saturation arithmettee
elaboration process early on if the performancenimit 9enerated code took almost 400 pisec to execute.

are acceptable processor utilization limits. Thoger _ ]
design of the systems could be avoided. As we can see from the execution number, saturation

can be an expensive operation if implemented in ANS
C on a DSP. Typically, better execution performaisce
Parametric Audio Equalizer for Blackfin 537 obtained by using wrap instead of saturating aréticn
However, this can also make the task of algorithm
% Biquad %| Biquad

Figure 13 A conceptual view of processor-in-the-loop
testing

ﬁ Biaued development harder. Often, designers can take
- I OO > advantage of processor-specific intrinsics to lager
Jointo  Post

" e e o« the hardware features and get better performance
s ML Bias :| Bias :| Biawas Sireo Scde without sacrificing the fidelity of the design obtad
(R o Rogw o Ron when using saturation. In this case, it's desirableave
. _ i ) a single model specification and leverage any fixed
Figure 14 Screen shot of parametric audio equalizer fopgint intrinsic capabilities of the processor. Téables
generating ANSI C-code the designer to create a single model and swap
processor optimizations in and out for deployment t

In this section, we focus on collecting profile extion different processors. Using TFL, we were able thuoe
times for different model configurations of the @b the execution time of the algorithm (using satarati
band Parametric Audio Equalizer. A screenshot ef tharithmetic) from 400 psec to 120 psec — a 70%
Parametric Audio Equalizer model from which weimprovement with just a change in the model setting
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Table 1 Comparison of Execution Times for
Variants of the Parametric Audio Equalizer

Biquad Filters

Execution
Implementation . Time**
P Wrap / Inline / (usec)
Saturate Function
Wrap Function 60.106
ANSI C
Saturate Function 398.117
Blackfin 53x C Function 121.587
"s‘i(r:nr:rr:sic*X ) Saturate
Inline 108.004
ASM iirdfl_fr16 Saturate Function 87.813

* Using Target Function Library (TFL) for integraty Blackfin 53x

C-intrinsic for fixed-point operations such as sation

** Base rate of the code was 10.66 msec. Procesdiaatitin in % is
obtained by dividing the execution time by thisebiage.Product
version used for code generation and measuremefR2009a.

apply modeling tools to specify algorithms using
graphical and textual techniques. Designers then
simulate these models to explore the behavior ef th
algorithm. Once the behavior of these models is
verified, designers can configure the algorithmiodel

to generate C-code which can be integrated into an
embedded application. In this paper we demonstrate
technique to configure the model to generate code
which can be called within the embedded applicatian
well as a technique to integrate existing C cadlatiide
into the modeling and code generation environment.

Specifically, we demonstrated how to configure aleio

of a 3-band parametric equalizer algorithm to gaeteer
C-code which can be integrated into the Analog Bewi
VisualDSP++ embedded development environment. To
demonstrate this process, we automated creatiom of
VisualDSP++ library project for the parametric
equalizer model and integrated this library inte th
parent feed-through project for an Analog Devices
Blackfin BF537 processor.

Subsequently, we discussed how the designer can use
execution profiling tools to identify areas for thuer
optimization in the design. Such profiing could

We could get better numbers if we were to inline thmeasure both memory footprint as well as processor
code for the Biquad filters instead of using reremnt
functions. This requires trading off program memory

size. Thus, when program memory space is a limitati We then described how to integrate optimized C-
using re-entrant function calls can appreciablyuoed callable libraries for specific sub-components,tsas
program memory utilization. Using inlined code, wethe [IR Biquad filters. We chose the optimized C-
were able to improve the performance of our alpamit callable assembly routine for Blackfin processoatth

to about 108 psec.

utilization.

ships with VisualDSP++ as an example replacement,
and also showed the resulting improvements in

Finally, we investigated the performance gains @& processor utilizations as a result of this replassmVe
achieve by integrating the Blackfin specifidfl_fr16
filter as a custom block as described in the previo different variants of the audio parametric equalize
section. As described in the previous section, tlogk
is functionally similar, but not identical used the
previous examples that generated ANSI C-code. UsirRinally, to verify that the replacement with optiad C-
the optimizediirdfl_fr16 filter block, we achieved a callable libraries did not introduce any unexpected
performance of 88 psec. By creating a block that igeviations in the results of the original algorithwe
optimized for this processor, the model is no langedetailed the technique of processor-in-the-loofirtgso
portable but achieves the best execution time faferify the behavior of the parametric equalizerings
saturated arithmetic.

6. CONCLUSION

During initial

stages of development
algorithms for embedded applications, designerenoft

also compared the execution performance of the

model using the profiling techniques describediearl

the optimized library calls) executing on the DSkEhw
the original simulation model by comparing their
outputs when using the same input test vectors.

of audio
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